2022年中考数学重难点专题讲座第一讲线段、角的计算与证明问题 .pdf

上传人:C****o 文档编号:24841845 上传时间:2022-07-07 格式:PDF 页数:12 大小:294.88KB
返回 下载 相关 举报
2022年中考数学重难点专题讲座第一讲线段、角的计算与证明问题 .pdf_第1页
第1页 / 共12页
2022年中考数学重难点专题讲座第一讲线段、角的计算与证明问题 .pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022年中考数学重难点专题讲座第一讲线段、角的计算与证明问题 .pdf》由会员分享,可在线阅读,更多相关《2022年中考数学重难点专题讲座第一讲线段、角的计算与证明问题 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习好资料欢迎下载中考数学重难点专题讲座第一讲线段、角的计算与证明问题【前言】中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中,难题了。 大家研究今年的北京一模就会发现,第二部分,或者叫难度开始提上来的部分,基本上都是以线段,角的计算与证明开始的。 城乡 18 个区县的一模题中,有 11 个区第二部分第一道题都是标准的梯形,四边形中线段角的计算证明题。剩下的 7 个区县题则将线段角问题与旋转,动态问题结合, 放在了更有难度的倒数第二道乃至压轴题当中。可以说,线段角问题就是中考数学有难度题的排头兵。对这些题轻松掌握的意义不仅

2、仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。在这个专题中,我们对各区县一模真题进行总结归纳,分析研究,来探究线段,角计算证明问题的解题思路。第一部分真题精讲【例 1】( 2010,崇文,一模)如图,梯形ABCD中,ADBC,9038BDCDBDCADBC, ,求AB的长【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。这道题中未知的是AB, 已知的是AD,BC 以及 BDC 是等腰直角三角形 ,所以要把未知的AB 也放在已知条件当中去考察.做

3、AE,DF 垂直于 BC,则很轻易发现我们将 AB 带入到了一个有大量已知条件的直角三角形当中.于是有解如下. 【解析】作AEBC于EDFBC,于FDFAE,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页学习好资料欢迎下载ADBC,四边形AEFD是矩形3EFADAEDF,BDCDDFBC,DF是BDC的BC边上的中线19042BDCDFBCBF ,4431AEBEBFEF,在RtABE中,222ABAEBE224117AB【例 2】( 2010,海淀,一模)已知:如图,在直角梯形ABCD 中,AD BC ,90DCB, ACB

4、D 于点O,2,4DCBC,求AD的长 . ODCBA【思路分析】这道题给出了梯形两对角线的关系.求梯形上底 .对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角)的题 ,一般思路是将对角线提出来构造一个三角形 .对于此题来说 ,直接将AC 向右平移 ,构造一个以D 为直角顶点的直角三角形.这样就将 AD 转化成了直角三角形中斜边被高分成的两条线段之一,而另一条线段BC 是已知的 .于是问题迎刃而解. OEDCBA【解析】过点D作/ /DEAC 交 BC 的延长线于点E. BDEBOC . ACBD 于点 O , 精选学习资料 - - - - - - - - - 名师归纳总结 -

5、 - - - - - -第 2 页,共 12 页学习好资料欢迎下载90BOC. 90BDE. / /ADBC , 四边形 ACED 为平行四边形. ADCE . 90 ,90BDEDCB,2DCBC CE. 2,4DCBC,1CE. 1AD此题还有许多别的解法,例如直接利用直角三角形的两个锐角互余关系,证明ACD 和DBC 相似,从而利用比例关系直接求出CD。有兴趣的考生可以多发散思维去研究。【例 3】( 2010,东城,一模)如图,在梯形 ABCD 中,ADBC,90B,=25ADBC,E为 DC 中点,4tan3C 求AE的长度EDCBA【思路分析】这道题是东城的解答题第二部分第一道,就是

6、我们所谓提难度的门槛题。乍看之下好象直接过D 做垂线之类的方法不行.那该怎样做辅助线呢?答案就隐藏在E是中点这个条件中.在梯形中,一腰中点是很特殊的.一方面中点本身是多对全等三角形的公共点,另一方面中点和其他底,腰的中点连线就是一些三角形的中线,利用中点的比例关系就可以将已知条件代入 .比如这道题 ,过中点 E 做 BC 的垂线 ,那么这条垂线与AD 延长线 ,BC 就构成了两个全等的直角三角形.并且这两个直角三角形的一个锐角的正切值是已经给出的.于是得解 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页学习好资料欢迎下载F

7、EMDCBA【解析】过点E作 BC 的垂线交于BC 点F,交AD的延长线于点M. 在梯形 ABCD 中, ADBC,E是 DC 的中点,MMFCDECE,在MDE和FCE 中,MMFCDEMCEFDECEMDEFCE. EFMEDMCF,25ADBC,32DMCF. 在 RtFCE 中,4tan3EFCCF,2EFME. 在 Rt AME 中,223652222AE【总结】以上三道真题,都是在梯形中求线段长度的问题.这些问题一般都是要靠做出精妙的辅助线来解决.辅助线的总体思路就是将梯形拆分或者填充成矩形+三角形的组合,从而达到利用已知求未知的目的.一般来说 ,梯形的辅助线主要有以下5 类: 精

8、选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页学习好资料欢迎下载过一底的两端做另一底的垂线,拆梯形为两直角三角形+ 一矩形平移一腰,分梯形为平行四边形+ 三角形延长梯形两腰交于一点构造三角形平移对角线,转化为平行四边形+三角形连接顶点与中点延长线交于另一底延长线构筑两个全等三角形或者过中点做底边垂线构筑两个全等的直角三角形以上五种方法就是梯形内线段问题的一般辅助线做法。对于角度问题,其实思路也是一样的。 通过做辅助线使得已知角度通过平行,全等方式转移到未知量附近。之前三道例题主要是和线段有关的计算。我们接下来看看和角度有关的计算

9、与证明问题。【例 4】 (2010,延庆,一模)如图,在梯形CDAB中, ABDC,DB平分ADC ,过点A作AEBD,交 CD 的延长线于点E,且2CE ,30BDC,3AD,求 CD 的长ABCDE【思路分析】此题相对比较简单,不需要做辅助线就可以得出结果。但是题目中给的条件都是此类角度问题的基本条件。例如对角线平分某角,然后有角度之间的关系。面对这种题目还是需要将已知的角度关系理顺。首先根据题目中条件,尤其是利用平行线这一条件,可以得出 (见下图) 角 C 与角 1,2,3 以及角 E 的关系。 于是一系列转化过后,发现角 C=60度,即三角形DBC 为 RT 三角形。于是得解。【解析】

10、:AEBD13,2E123ABCDE精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页学习好资料欢迎下载123E32ADCEE2CE60ADCBCD梯形 ABCD 是等腰梯形3BCAD230 ,60BCD90DBC在 RtDBC中,230 ,3BC6CD【例 5】( 2009,西城,一模)已知:2PA,4PB,以 AB 为一边作正方形ABCD ,使 P、D 两点落在直线AB 的两侧 .如图,当 APB=45 时,求AB 及 PD 的长;【思路分析】这是去年西城一模的压轴题的第一小问。如果线段角的计算出现在中间部分,往往意味着难度并

11、不会太高。但是一旦出现在压轴题,那么有的时候往往比函数题,方程题更为棘手。这题求AB 比较容易,过A 做 BP 垂线,利用等腰直角三角形的性质,将APB 分成两个有很多已知量的RT。但是求PD 时候就很麻烦了。PD 所在的三角形PAD是个钝角三角形,所以就需要我们将PD 放在一个直角三角形中试试看。构筑包含PD 的直角三角形,最简单的就是过P做 DA 延长线的垂线交DA 于 F,DF 交 PB 于 G。这样一来,得到了 PFA AGE 等多个 RT。于是与已求出的AB 等量产生了关系,得解。【解析】:如图,作AEPB 于点 E APE 中, APE=45 ,2PA,精选学习资料 - - - -

12、 - - - - - 名师归纳总结 - - - - - - -第 6 页,共 12 页学习好资料欢迎下载2sin212AEPAAPE,2cos212PEPAAPE4PB,3BEPBPE在 RtABE 中, AEB=90 ,2210ABAEBE如图,过点P作 AB 的平行线,与DA 的延长线交于F,设 DA 的延长线交PB 于 G在 RtAEG 中,可得10coscos3AEAEAGEAGABE,(这一步最难想到,利用直角三角形斜边高分成的两个小直角三角形的角度关系)13EG,23PGPBBEEG在 RtPFG 中,可得10coscos5PFPGFPGPGABE,1015FG【总结】由此我们可以

13、看出,在涉及到角度的计算证明问题时,一般情况下都是要将已知角度通过平行, 垂直等关系过度给未知角度。所以,构建辅助线一般也是从这个思路出发,利用一些特殊图形中的特殊角关系(例如上题中的直角三角形斜边高分三角形的角度关系)以及借助特殊角的三角函数来达到求解的目的。第二部分发散思考通过以上的一模真题,我们对线段角的相关问题解题思路有了一些认识。接下来我们自己动手做一些题目。希望考生先做题,没有思路了看分析,再没思路了再看答案。【思考 1】如图,在梯形ABCD 中, AD BC,CDAB若 ACBD ,AD+BC=310, 且60ABC, 求 CD 的长【思路分析】前面我已经分析过,梯形问题无非也就

14、那么几种辅助线的做法。此题求腰,所以自然是先将腰放在某个RT 三角形中。 另外遇到对角线垂直这类问题,一般都是平移某一条对角线以构造更大的一个RT 三角形,所以此题需要两条辅助线。GFDCBPEAC B D A 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 12 页学习好资料欢迎下载在这类问题中,辅助线的方式往往需要交叉运用,如果思想放不开,不敢多做,巧做,就不容易得出答案。解法见后文 【思考2】如图,梯形ABCD 中, AD/BC , B=30, C=60, E,M,F,N 分别是 AB,BC,CD,DA 的中点,已知BC=7,MN

15、=3 ,求 EF 【思路分析】此题有一定难度,要求考生不仅掌握中位线的相关计算方法,也对三点共线提出了要求。若求EF,因为 BC 已知,所以只需求出AD 即可。由题目所给角B,角 C的度数,应该自然联想到直角三角形中求解。(解法见后)【思考 3】已知ABC ,延长 BC 到D,使 CDBC取AB的中点F,连结FD交 AC 于点E 求AEAC的值; 若 ABa , FBEC ,求 AC 的长【思路分析】求比例关系,一般都是要利用相似三角形来求解。此题中有一个等量关系BC=CD ,又有F 中点,所以需要做辅助线,利用这些已知关系来构造数个相似三角形就成了获得比例的关键。(解法见后)A D C F

16、E M B N A B F E C D 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页学习好资料欢迎下载【思考 4】如图 3, ABC 中, A=90, D 为斜边 BC 的中点, E,F 分别为 AB,AC上的点,且DEDF,若 BE=3,CF=4,试求 EF 的长【思路分析】中点问题是中考几何中的大热点,几乎年年考。有中点自然有中线,而倍长中线方法也成为解题的关键。将三角形的中线延长一倍,刚好可以构造出两个全等三角形,很多问题就可以轻松求解。本题中, D 为中点, 所以大家可以看看如何在这个里面构造倍长中线。(解法见后)【

17、思考5】 如图,在四边形ABCD 中,E为AB上一点,ADE和BCE 都是等边三角形,AB、 BC 、 CD 、DA的中点分别为P、 Q 、M、 N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论PQNMEDCBA【思路分析】此题也是中点题,不同的是上题考察中线,此题考察中位线。本题需要考生对各个特殊四边形的性质了如指掌,判定,证明上都需要很好的感觉。尤其注意梯形,菱形,正方形,矩形等之间的转化条件。(解法见后)第三部分思考题答案思考 1 【解析】:作DEBC 于 E,过 D 作 DFAC 交 BC 延长线于F则四边形ADFC 是平行四边形,CFAD,DF=AC 四边形ABCD 是等腰

18、梯形,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页学习好资料欢迎下载AC=BD BDDF又 AC BD, DFAC , BD DFBDF 是等腰直角三角形11()522DEBFADBC3在CDERt中,60DCE,DCECDDEsin60sin35CD,10CD思考 2 【解析】:延长 BA,CD 交于点 H,连接 HN ,因为 B=30, C=60,所以 BHC=90 所以HN=DN(直角三角形斜边中线性质)NHD= NDH=60 连接 MH ,同理可知MHD= C=60。所以 NHD= MHD ,即 H,N,M 三点共线

19、(这一点容易被遗漏,很多考生会想当然认为他们共线,其实还是要证明一下)所以 HM=3.5 ,NH=0.5 AN=0.5 所以 AD=1 EF= (1+7) /2=4 思考 3 【解析】过点F作 FMAC,交 BC 于点MF为AB的中点M为 BC 的中点,12FMAC由 FMAC,得CEDMFD ,ECDFMD ,FMDECD23DCECDMFMA B F E C D M A D C F EE M B N H 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页学习好资料欢迎下载22113323ECFMACAC1132ACACAEA

20、CECACACAC ABa ,1122FBABa又 FBEC ,12ECa13ECAC ,332ACECa 思考 4 【解析】:延长 ED 至点 G,使 DG=ED ,连接 CG,FG则 CDG BDE 所以 CG=BE=3 , 2=B因为 B+ 1=90,所以 1+2= FCG=90因为 DF 垂直平分EG,所以 FG=EF在 RtFCG 中,由勾股定理得2222345FGCGCF,所以 EF=5思考 5 【解析】:证明:如图,连结AC 、BDPQ为ABC 的中位线,12PQAC,12PQAC 同理12MNAC,12MNAC AG B D F E 1 C 2 图 3 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页学习好资料欢迎下载MNPQ, MNPQ ,四边形 PQMN 为平行四边形(有些同学做到这一步就停了,没有继续发现三角形全等这一特点,从而漏掉了菱形的情况,十分可惜)在AEC 和DEB中,AEDE,ECEB,60AEDCEB,即AECDEB AECDEB ACBD 1122PQACBDPN四边形 PQMN 为菱形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁