最新反应工程课件第四章精品课件.ppt

上传人:豆**** 文档编号:24780360 上传时间:2022-07-07 格式:PPT 页数:83 大小:3.72MB
返回 下载 相关 举报
最新反应工程课件第四章精品课件.ppt_第1页
第1页 / 共83页
最新反应工程课件第四章精品课件.ppt_第2页
第2页 / 共83页
点击查看更多>>
资源描述

《最新反应工程课件第四章精品课件.ppt》由会员分享,可在线阅读,更多相关《最新反应工程课件第四章精品课件.ppt(83页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 在连续搅拌反应釜或管式反应器中进行反应,如果反应在连续搅拌反应釜或管式反应器中进行反应,如果反应物料的微观混合程度不同,则考察方法即研究方法就不同。物料的微观混合程度不同,则考察方法即研究方法就不同。微观混合有两种极限状态,完全混合和完全不混合,它们的微观混合有两种极限状态,完全混合和完全不混合,它们的研究方法完全不同。研究方法完全不同。综上所述,考察对象都是物料,不同的是按照微观混合综上所述,考察对象都是物料,不同的是按照微观混合的程度划分考察的基准(范围):的程度划分考察的基准(范围):完全混合完全混合反应容积反应容积V VR R或或dVdVR R中间状态中间状态微元(由微团组成)微元(

2、由微团组成)完全不混合完全不混合微团微团实际反实际反应器应器停留时停留时间分布间分布按已知模按已知模型设计型设计实际反应器设计存在的问题:实际反应器设计存在的问题: 影响因素太多、无法准确计算影响因素太多、无法准确计算解决方法:解决方法:分析:分析: 气 液 气 液 开放系统 在实际反应器中:在实际反应器中:A A、同时进入反应器的物料由于同时进入反应器的物料由于 “工程因素工程因素”不可能同时离开反不可能同时离开反应器。应器。B B、同一时刻离开反应器的物料、同一时刻离开反应器的物料中,在反应器内经历的中,在反应器内经历的停留时间停留时间有长有短,形成一个分布,称为有长有短,形成一个分布,称

3、为停留时间分布。停留时间分布。由于物料在反应器内的停留时间分布完全是由于物料在反应器内的停留时间分布完全是随随机机的,因此可以根据的,因此可以根据概率分布的概念概率分布的概念对物料在反应对物料在反应器内的停留时间分布作器内的停留时间分布作定性定性的描述。的描述。( )E t( )dNE t dtN0( )1.0E t dt1NN ()Ft0( )tdNF tN 问题问题00( )( )ttdNF tE t dtN( )( )dF tE tdt0(0)0;tF0( )( )1.0tFE t dt 如果停留时间的单位为秒,那么如果停留时间的单位为秒,那么F(180)=0.9F(180)=0.9的物

4、理意义的物理意义是什么?是什么?( )dNE t dtN0( )tdNF tN问题问题 E(t) F(t) 面积面积= =? 1.0 E(t1) F(t1)斜率斜率= =? t1 t t1 t ( )dNE t dtN0( )tdNF tN00( )( )ttdNF tE t dtN面积面积= =?问题问题停留时间小于停留时间小于t t1 1质点的分率是多少?停留时间大于质点的分率是多少?停留时间大于t t1 1质点的分率是多少?质点的分率是多少?4.2.2 4.2.2 停留时间分布的实验测定停留时间分布的实验测定 存在问题:存在问题:在同一时刻离开反应器的物料中物料质点的在同一时刻离开反应器

5、的物料中物料质点的性质相性质相同同,所以不能够测到物料质点的停留时间分布。,所以不能够测到物料质点的停留时间分布。解决方法:解决方法:要采用要采用应答技术应答技术才能测定物料质点的停留时间分布。才能测定物料质点的停留时间分布。1 1)应答技术)应答技术 用一定的方法在反应器进口处加入用一定的方法在反应器进口处加入示踪剂示踪剂,然后在出口处,然后在出口处检测示踪剂,以获得示踪剂在反应器中停留时间分布规律的实检测示踪剂,以获得示踪剂在反应器中停留时间分布规律的实验数据。验数据。 含示踪剂流体含示踪剂流体 v0 示踪剂检测示踪剂检测 CA0 CA(t) 流体流体 v0 切换切换 v0 系统系统 VR

6、 含示踪剂流体 v0 示踪剂检测 CA0 CA(t) 流体 v0 切换 v0 系统 VR 遇到问题:示踪剂如何选择?如何加入?遇到问题:示踪剂如何选择?如何加入? 示 踪 剂 脉 冲 注 入 示 踪 剂 检 测 A CA(t) 主 流 体 v0 v0 CA(t) (t) CA(t) 面 积 =C0 t=0 t 0 t 系 统 VR PCMVCMVtEVCdtdtMEdtttdtVCM)()(t0)(踪物量:时间段离开反应器的示注入示踪物总量: V/MV/M为定值,测得的结果是为定值,测得的结果是E(t)E(t)。因此脉冲法测得的停留。因此脉冲法测得的停留时间分布代表了物料在反应器中的停留时间分

7、布密度。时间分布代表了物料在反应器中的停留时间分布密度。( )dNE t dtN 含示踪剂流体 示踪剂检测 C0 C 流体 v v 系统 VR 实验实验结果结果实验方法:实验方法:A A、调节主物料以稳定的流率、调节主物料以稳定的流率V V通过反应体积通过反应体积V VR RB B、在进口处,从某瞬时(、在进口处,从某瞬时(t=0t=0)开始,连续加入示踪物。)开始,连续加入示踪物。C C、注入同时在出口处测定示踪物浓度、注入同时在出口处测定示踪物浓度C C随时间随时间t t的变化关系。的变化关系。 含 示 踪 剂 流 体 v0 示 踪 剂 检 测 CA0 CA(t) 流 体 v0 切 换 v

8、0 CA(t) CA(t) CA0 CA0 面 积 =CA0t t=0 t 0 t 系 统 VR SCCtFVCtttFVCVCtttVCt)()()(00000量:时间段内离开的示踪物量:时间段内注入的示踪物阶跃法测得的停留时间分布代表了物料在反应器中的停阶跃法测得的停留时间分布代表了物料在反应器中的停留时间分布函数。留时间分布函数。 含示踪剂流体 示踪剂检测 C0 C 流体 v v 系统 VR 0( )tdNF tN实验实验结果结果4)实验数据处理)实验数据处理tPPtPPPPPdtdtCCdttEtFdtCCCMVtEdtCVdtCVdttMEMM0000000)()()()()3()(

9、)()()()2()()()()1(分布函数分布密度示踪剂总量PCMVCMVtE)()(dtCdtCdtdtCCtFVMdtCdtdtCCdttEtFPPtPPPtPPt0t0000000)()()()()(,)()()()()(定值,提到积分号外面和式。用上式积分,只能写为一些离散数据,无法利为的以求解。但实验中测得此两种情况利用上式可)已知并可积;(、为常数、)求解PPPCCCa)(tf)(b;)(4(PCMVCMVtE)()(0000000t0)()()()()()()()()()()()(tCCdtCCtEtCVdtCVMtCtCdtCdtCtFPPPPPPPtPPP(5)5)说明说明

10、A A、t t相等,称为等时间距实验;相等,称为等时间距实验;B B、t t不相等,称为离散型实验;不相等,称为离散型实验;C C、E(t)E(t)是瞬时值,单位是瞬时值,单位S S-1-1。F(t)F(t)无单位,是时间的积累值无单位,是时间的积累值4.2.3 4.2.3 停留时间分布的数字特征停留时间分布的数字特征 数字特征的概念:数字特征的概念:随机变量是按一定的分布规律来取值,随机变量是按一定的分布规律来取值,有时并不需要了解这个规律的全貌,而只需要知道它的某个有时并不需要了解这个规律的全貌,而只需要知道它的某个侧面,这时、往往可以用侧面,这时、往往可以用一个或几个数字来描述这个侧面一

11、个或几个数字来描述这个侧面,这种数字按分布而定,它部分的代表分布的性态,称这种数这种数字按分布而定,它部分的代表分布的性态,称这种数字为随机变量的数字特征。字为随机变量的数字特征。存在的问题:存在的问题:采用应答技术可以获得停留时间分布的实验采用应答技术可以获得停留时间分布的实验曲线。这种曲线由物料的流动状况决定,有很大的随机性,曲线。这种曲线由物料的流动状况决定,有很大的随机性,很难用函数的形式加以比较。很难用函数的形式加以比较。解决方法:解决方法:采用数字特征来表征这些实验曲线,并加以比采用数字特征来表征这些实验曲线,并加以比较。其中,最重要的数字特征为较。其中,最重要的数字特征为“数学期

12、望数学期望”和和“方差方差”。1 1组:组:100 70 60 50 20 100 70 60 50 20 2 2组:组: 62 61 60 59 5862 61 60 59 58平均成绩?区别?平均成绩?区别?()物料平均停留时间()物料平均停留时间t tm m:是整个物料在设备内的:是整个物料在设备内的平均停留时间。平均停留时间。 设进入反应器的物料流量为设进入反应器的物料流量为V V,则在反应器中任,则在反应器中任取一微元体积取一微元体积dVdVR R, ,对于任何流型,均有对于任何流型,均有RdVVdt0,0;,RmRRtVttVV0RVRmdVtV0RmVtV积分积分 该式是该式是t

13、 tm m的普遍式。的普遍式。当为等容过程,当为等容过程,V=VV=V0 0, , 则上式变为则上式变为000( )( )( )tEt d tttEt d tEt d tt(1 1)数学期望)数学期望:是物料停留时间是物料停留时间t t的平均值。的平均值。1)数学期望)数学期望mtttmt0( )mtttE t dt 100( )( )mtttE t dttdF t ( )( )( )( )tE tttE ttE ttE t对于等容过程对于等容过程通过实验确定通过实验确定,就可求出就可求出或或对于离散型测定值对于离散型测定值mtt和(3)的关系的关系000000000)()()()()()()

14、()()(PPmPPPPPPmCCttttCtCtdtCdtCtdtdtCCtdtttEtt对等时间距实验222220000()( )()( )( )( )tttE t dtttE t dtt E t dttE t dt2 2)方差)方差(1 1)定义:方差也称离散度,是用来度量随机变量与其均)定义:方差也称离散度,是用来度量随机变量与其均值的偏离程度,是值的偏离程度,是E(t)E(t)对数学期望的二阶矩,其定义为:对数学期望的二阶矩,其定义为: t可见方差是物料质点停留时间可见方差是物料质点停留时间t t和和的偏离程度。的偏离程度。度量随机变量分散程度的方法有两种:度量随机变量分散程度的方法

15、有两种:A A、离差:、离差:随机变量与平均值的差值的平均值。随机变量与平均值的差值的平均值。 B B、方差:、方差:随机变量与平均值的差值的平方的平均值。随机变量与平均值的差值的平方的平均值。取平方的目的是避免正负偏差相互抵消,因为不论是正偏差取平方的目的是避免正负偏差相互抵消,因为不论是正偏差还是负偏差同样都认为是分散程度大。还是负偏差同样都认为是分散程度大。1 1组:组:80 70 60 50 40 80 70 60 50 40 2 2组:组:62 61 60 59 5862 61 60 59 58离差?方差?离差?方差?20022202220202002022202)()()3()()

16、()()(2)()()()(2)()()(2)()()2(mPPttttCtCttdttEtttdttEtdttEtdttEt tdttEtdttEtt ttdttEtt对离散型计算1mmtt( )( )( )( )( )()mmmdFdFdF tEtt E ttddtdt(1 1)平均对比停留时间)平均对比停留时间(2 2)( )F( )( )( ) ()( )( )mmtdFEdt E t dE t dtdF tt( )( )FF t( )E(3 3)3 3)对比时间)对比时间 为了方便起见,常用对比时间作为变量。为了方便起见,常用对比时间作为变量。 对比时间的定义为对比时间的定义为mtt

17、(4 4)用)用表示的方差:表示的方差:022)()(dttEttt22222022202200220020002022/)(1)(1 1)(2)(1 11)(21)( )()(2)( )()1(mmmmmttdttEttdttEttdtttEtdttEttdtttEtttdtttEtttdEdEdEdEttmmmmmmm22022222001( )1()( ) ()()( )(4 24)mmtmmmmmmEdtttttt E t dE t dttttttt2021201平推流:平推流: 全混流:实际流型:实际流型:思考题思考题4.2.4 4.2.4 理想流型的停留时间分布理想流型的停留时间分

18、布 1)1)平推流平推流 物料质点的停留时间相同,当为等容过程时物料质点的停留时间相同,当为等容过程时 ,物料质物料质点的停留时间点的停留时间等于等于整个物料的平均停留时间:整个物料的平均停留时间:t = tt = tm m 。问题问题理想流型的停留时间分布如何得出?理想流型的停留时间分布如何得出?解决方法解决方法逻辑推理、计算得出,不用实验逻辑推理、计算得出,不用实验 0 Z/2 Z 分析分析0( )1mmttF ttt01( )11F(1(1)平推流的停留时间分布函数:)平推流的停留时间分布函数: C/C01.00t0ttm1.0C/C0实验方法?实验方法?分分析析结结果果(2)平推流的停

19、留时间分布密度:)平推流的停留时间分布密度: 0( )0mmmttE ttttt01( )101E(C)p0t0ttm(C)P实验方法?实验方法?为什么?分分析析结结果果(3(3)平推流的停留时间分布函数和分布密度的特点:)平推流的停留时间分布函数和分布密度的特点: A A、图形特点:、图形特点:注入曲线和应答曲线的注入曲线和应答曲线的形状完全相同形状完全相同,但应,但应答曲线答曲线滞后滞后t tm m时间。时间。C/C01.00t0ttm1.0C/C0(C)p0t0ttm(C)P 0)(,1)(,0)(,1)(:)(,1)(,)(,1)(:0)(,0)(,0)(,0)(:EFtEtFttEF

20、tEtFttEFtEtFttBmmm、数值特点:0( )1mmttF ttt0( )0mmmttE ttttt()()()()当()()()()当()()()()当)(,)(,)(,)(:)(,)(,)(,)(:)(,)(,)(,)(:EFtEtFttEFtEtFttEFtEtFttmmm2 2)全混流)全混流(1 1)全混流的停留时间分布函数:)全混流的停留时间分布函数: C/C01.00t0ttm1.0C/C0实验方法?实验方法?分分析析曲线方程?(2)全混流的停留时间分布密度:)全混流的停留时间分布密度: (C)p0t0ttm(c)p实验方法?实验方法?分分析析曲线方程?进入量:进入量:

21、VC0dt离开量:离开量:VCdt积累量:积累量:VRdC 含示踪剂流体 C0 v 流体 检测 C v SCCtF)()(0分析分析)(tfC方法方法eFtFeCCttCCCttCCCdttCCcddtVVCCdcdCVdtCCVdCVVCdtdtVCmttmmCtmRRR1)()(1)ln(lnln1c)(000000000000)()(ededddFEetdteddttdFtEmmttmtt)1 ()()(1)1 ()()(PCMVCMVtE)()(分析分析00( )( )ttdNF tE t dtN如何求?如何求?方法方法(4 4)全混流的停留时间分布函数和分布密度的特点:)全混流的停留

22、时间分布函数和分布密度的特点: /( )1mt tF te ( )F tttm0.6321.0t/1( )mttmEtet( )E ttm1/ tmC/C01.00t0ttm1.0C/C0 0)()(, 1)()(:)(,1)(,632.01)()(:1)(,0)(,1)(,0)(:0111EtEFtFteEettEeFtFttEFttEtFtmmm数值特点:eEettEmttm)(1)(eFetFmtt1)(1)(()()当()()()当()()()()当)()(,)()(:)(,)(,)()(:)(,)(,)(,)(:0EtEFtFtEtEFtFttEFtEtFtm.3.1 .3.1 数学

23、模型方法数学模型方法 数学模型方法是化学反应工程的基本研究方法,由四部份数学模型方法是化学反应工程的基本研究方法,由四部份组成:组成:4.3 非理想流动模型非理想流动模型数学模型数学模型简化模型简化模型模型检验模型检验模型计算模型计算实际应用实际应用修改修改真实过程真实过程1) 1) 简化模型:简化模型:将真实过程加以抽象简化成简化模型。例将真实过程加以抽象简化成简化模型。例如如, , 平推流,全混流,均匀表面吸附理论,双膜论、缩芯平推流,全混流,均匀表面吸附理论,双膜论、缩芯模型。模型。 数学模拟的基本要求数学模拟的基本要求) )简化模型的等效性:简化模型的等效性:某一真实过程可以用多个简化

24、模某一真实过程可以用多个简化模型来描述,但简化模型必须等效于真实过程,不能失真。型来描述,但简化模型必须等效于真实过程,不能失真。3)3)数学处理方法力求简单:便于应用。例如双膜论所采用数学处理方法力求简单:便于应用。例如双膜论所采用的方法比渗透论的数学方法简单,所以直到现在,人们仍的方法比渗透论的数学方法简单,所以直到现在,人们仍然采用双膜论来研究气液反应。然采用双膜论来研究气液反应。4)4)模型参数要少:模型参数是简化模型偏离真实过程的归模型参数要少:模型参数是简化模型偏离真实过程的归并结果,都要通过实验确定,所以模型参数越少越好,而并结果,都要通过实验确定,所以模型参数越少越好,而且要便

25、于测定。且要便于测定。.3.2.3.2轴向混合模型轴向混合模型 1 1)模型要点)模型要点 ()垂直于流动方向的每一个截面上,物料浓度均匀;()垂直于流动方向的每一个截面上,物料浓度均匀; ()沿流动方向,具有相同的流体速度和()沿流动方向,具有相同的流体速度和扩散系数扩散系数; ()物料浓度沿流动方向连续变化;()物料浓度沿流动方向连续变化; ()模型参数()模型参数z z。 轴向混合模型适用于轴向混合模型适用于管式反应器、塔式反应器管式反应器、塔式反应器等。等。 0 Z/2 Z 2 2)模型方程)模型方程条件:条件:设为等容设为等容, ,稳定过程,反应器管长为,直径为稳定过程,反应器管长为

26、,直径为D DR R, 体积为体积为V VR R;衡算范围:衡算范围:在离进口在离进口 l l处取处取 dl dl 微元管段微元管段衡算对象:衡算对象:示踪物示踪物B B衡算基准:衡算基准:单位时间单位时间物料平衡:物料平衡: BB进入量进入量 BB离开量离开量 BB积累量积累量 24RzDCuCECdlll2()4RzDCCu CdlEll24RDCdlt进入量进入量离开量离开量积累量积累量 22zCCCEutll022221mzCtlClCtLECCCCCuLPellll得到得到221()()CCCPell式中式中称为称为ecleteclet准数,准数,E Ez z是轴向混合是轴向混合zu

27、LPeE弥散系数(轴向扩散系数),为模型参数。弥散系数(轴向扩散系数),为模型参数。 方程的边界条件较为复杂,和反应器进出口处物料方程的边界条件较为复杂,和反应器进出口处物料流动状况以及示踪剂加入方法有关,只有个别情况下流动状况以及示踪剂加入方法有关,只有个别情况下方程才有解析解。方程才有解析解。3 3)模型方程的解)模型方程的解 采用阶跃法输入示踪剂:采用阶跃法输入示踪剂:0111( )1()22CFerfPeC23(1)( )44PePeEexp202( )yxerfyedx方程的解为方程的解为式中式中erferf为误差函数,其定义为为误差函数,其定义为 以以PePe为参数,为参数,F()

28、F()和和,E()E()和和的关系的关系如图所示。如图所示。 zuLPeE 图中图中PePe表示没表示没有轴向扩散,即为有轴向扩散,即为平推平推流流;当;当PePe时,表示时,表示轴向扩散达到极限,即轴向扩散达到极限,即为为全混流全混流。分析分析1mtt222)tzEulPe2m=2(tzuLPeE4 4)数学期望和方差)数学期望和方差2220( )tt E t dtt对于实际反应器,求取模型参数的方法如下。对于实际反应器,求取模型参数的方法如下。()实验测定()实验测定F(t)F(t)或或 E(t)E(t);()计算()计算t2()计算)计算()计算)计算eP.3.3 .3.3 多级串联全混

29、流模型多级串联全混流模型 1) 定义定义 多级串联全混流模型是用多级串联全混流模型是用m m个等体积串联的全混流模型来模个等体积串联的全混流模型来模拟实际反应器中的流动状况。拟实际反应器中的流动状况。(1(1)模型要点)模型要点 121100.RRRmRRRRmmiVVVVmVVmVttm tVV;(2(2)模型参数)模型参数m m 确定模型参数确定模型参数m m,即可对实,即可对实际反应器按多级串联全混流反应际反应器按多级串联全混流反应器进行计算。器进行计算。蠕动泵蠕动泵储液槽储液槽1电磁阀电磁阀23456搅拌电机搅拌电机100iiiRidCC VCVVdt00RiRimmVmVtmVVt2

30、) 2) 物料衡算物料衡算模型方程的建立模型方程的建立 阶跃注入法阶跃注入法 对第对第i i个反应器进行示踪物的物料衡算个反应器进行示踪物的物料衡算 BB进入量进入量 BB离开量离开量 BB积累量积累量 V0V0Ci-1CiVRii1(452)00iiimmidCmmCCdttttC1(452)00iiimmidCmmCCdttttCtttmittmmidteCetmCmm012对上式积分得:对上式积分得:3) 方差方差 与与m的关系的关系mttmtttmttmmieFeCCtFdteetmCCCCmmm1)(,1)()1(0100101对第一级:tttmittmmidteCetmCmm01)

31、1 (1)(),1 (1)()1 () 2(0200211meFttmeCCtFdteeCettCCCmmttmtttmttmttmmimmmm对第二级:mdemmdEemmddFEmmmmeCCFnmmmmmmmmm11)!1(1)()5()!1()()()4()()!1(1)(! 211 1)()3(0120221120级:对第21m以以m m为参数,作为参数,作F F()、E E()图图当当m m1 1时,为时,为全混流全混流;当;当m m时,为时,为平推流平推流。 对于实际反应器,求取对于实际反应器,求取m m的方法如下。的方法如下。 (1 1)实验测定实际反应器的)实验测定实际反应器

32、的F(t)F(t)或或 E(t)E(t); ()计算()计算模型参数模型参数m m求取求取t221m()计算()计算()计算()计算m m求出求出m m后,即可按后,即可按m m级串联全混流模型对实际反应器级串联全混流模型对实际反应器进行有关计算。进行有关计算。 (1)(1)理想管式反应器理想管式反应器(如移动床)中进行固相加工反应时,由(如移动床)中进行固相加工反应时,由于每个固体颗粒在反应器中的停留时间是相等的,因此反应的于每个固体颗粒在反应器中的停留时间是相等的,因此反应的总结果(平均浓度和平均转化率)就等于每个颗粒的反应结果,总结果(平均浓度和平均转化率)就等于每个颗粒的反应结果,且完

33、全由化学反应动力学特性决定。且完全由化学反应动力学特性决定。 (2)(2) 连续釜式反应器连续釜式反应器中中进行固相加工反应时,由于进行固相加工反应时,由于返混,使返混,使得进人反应器的固体颗粒在反应器中停留时间不均匀,形成一得进人反应器的固体颗粒在反应器中停留时间不均匀,形成一定的分布。这样每个颗粒的反应结果各不相同,定的分布。这样每个颗粒的反应结果各不相同,反应总结果当反应总结果当然受停留时间分布的影响然受停留时间分布的影响。 在一个连续过程中,某个变量的不均匀性是工业生产中经在一个连续过程中,某个变量的不均匀性是工业生产中经常出现的现象。除了上述的常出现的现象。除了上述的停留时间具有不均

34、匀性停留时间具有不均匀性,即有一定,即有一定的分布外,还有的分布外,还有速度分布、温度分布和浓度分布速度分布、温度分布和浓度分布等,作为工程等,作为工程人员应能正确判断这种变量的不均匀性在什么情况下是有利的,人员应能正确判断这种变量的不均匀性在什么情况下是有利的,在什么条件下是不利的,这样便能采取适当措施去发展或力图在什么条件下是不利的,这样便能采取适当措施去发展或力图消除这种不均匀性。消除这种不均匀性。 4.4.1 4.4.1 停留时间分布对固相加工反应结果的影响停留时间分布对固相加工反应结果的影响 4.44.4 混合程度对反应结果的影响混合程度对反应结果的影响1 1) 滴际混合和微团间混合

35、状态只有在返混存在的滴际混合和微团间混合状态只有在返混存在的情况下,才会对化学反应的结果产生影响;情况下,才会对化学反应的结果产生影响;2 2)对于一级反应而言,滴际混合的程度对反应速率)对于一级反应而言,滴际混合的程度对反应速率毫无影响;级数大于一级,滴际混合对反应速率不利;毫无影响;级数大于一级,滴际混合对反应速率不利;反之,级数小于一级则有利;而且级数偏离一级愈远,反之,级数小于一级则有利;而且级数偏离一级愈远,其影响愈大。其影响愈大。3 3)反应转化率愈高,它的影响程度也愈大。)反应转化率愈高,它的影响程度也愈大。4.4.2 4.4.2 微观混合及对反应结果的影响微观混合及对反应结果的

36、影响 物料的流动状况介于平推流和全混流之间,为非理想流物料的流动状况介于平推流和全混流之间,为非理想流动。实际反应器的计算过程如下。动。实际反应器的计算过程如下。4.54.5 非理想流动反应器的计算非理想流动反应器的计算停留时间分布 流动模型和模型参数 实际反应器 物料衡算 动力学方程2)由xAf计算VR1)由VR计算xAf4.5.1 4.5.1 轴向混合轴向混合反应器的转化率反应器的转化率 220AAzAd CdCEurdldl设进行一级不可逆反应设进行一级不可逆反应,AArkC,对方程进行无因次化:对方程进行无因次化:2210AAeAomZAAA mCtluLClPCtLEd CdCkC

37、tPedldl;()empkt41 22041(1)11122AAACxPePeCexpexp 解得:解得: 以以PePe准数为参变数,(准数为参变数,( 1 1X XA A )ktktm m关系标绘如图(关系标绘如图(4 41515)。)。 对于二级反应,则方程没有解析解,需用数值解。(对于二级反应,则方程没有解析解,需用数值解。(1 1X XA A)kCkCA0A0t tm m 关系如图(关系如图(4 41616)。通过实验确定)。通过实验确定PePe后,利用该图可以查到反应结果。后,利用该图可以查到反应结果。111mAmmxktttm由式(332) :式中221m4.5.2 4.5.2

38、多级串联全混流模型反应器的转化率多级串联全混流模型反应器的转化率 设稳定等容过程,一级不可逆反应设稳定等容过程,一级不可逆反应通过实验测定确定通过实验测定确定停留时间分布数据,确定停留时间分布数据,确定,则则(1 1)对正在运行的反应器测定停留时间分布数据,选择)对正在运行的反应器测定停留时间分布数据,选择流动模型并确定模型参数,进行物料衡算流动模型并确定模型参数,进行物料衡算, ,对反应器的生对反应器的生产能力产能力 进行技术评估。进行技术评估。(2 2)如果要设计反应器)如果要设计反应器, ,则缺乏停留时间分布数据,目前则缺乏停留时间分布数据,目前尚未解决这一问题。一般采用尚未解决这一问题

39、。一般采用“冷模冷模”试验获得停留时间试验获得停留时间分布数据,选择流动模型并确定模型参数,最后计算反应分布数据,选择流动模型并确定模型参数,最后计算反应器体积。器体积。数学模拟方法小结数学模拟方法小结本章小结本章小结1 1)基本概念)基本概念 宏观混合;微观混合;宏观混合;微观混合; 停留时间分布函数和分布密度;阶跃法;脉冲法;停停留时间分布函数和分布密度;阶跃法;脉冲法;停留时间分布数字特征;留时间分布数字特征; 轴向混合模型及其模型参数轴向混合模型及其模型参数EzEz;多级串联全混流模型;多级串联全混流模型及其模型参数及其模型参数m m。2 2)核心内容)核心内容 (1 1)停留时间分布

40、的测定方法及其数字特征;)停留时间分布的测定方法及其数字特征; (2 2)平推流和全混流的停留时间分布;)平推流和全混流的停留时间分布; (3) 3) 轴向混合模型,多级串联全混流模型轴向混合模型,多级串联全混流模型; ; (34) (34)轴向混合反应器和多级串联全混流反应器计算。轴向混合反应器和多级串联全混流反应器计算。思考题思考题1 在某流动反应器中进行等温一级液相分解反应,反应在某流动反应器中进行等温一级液相分解反应,反应速率常数速率常数k=0.307L/min。对该反应器的脉冲示踪测得如下。对该反应器的脉冲示踪测得如下所示的数据。所示的数据。01245530示踪物浓度 g/L3530

41、2520151050时间 min试用多级全混流模型计算其转化率为多少?试用多级全混流模型计算其转化率为多少?解:设该反应器内液体的流量恒定且等于V0,加入示踪物的总量为M,则有MV0Ct=(3+5+5+4+2+1)5V0=100 V00( )100pPptCCE tCt01245530示踪物浓度 g/L35302520151050时间 min00.010.020.040.050.050.030E(t)( )15min( )tE ttE t22200( )47.5( )tt E ttE t数学期望:方差:E(t)和t的关系如下表。2220.211tt214.76m4.7611110.961511

42、0.3074.76mAmxkt 22Pe2229.480.211Pe1 4/1 4 0.307 15/9.481.72mktPe 思考题思考题2 题题1 1 中若用扩散模型,则转化率为多少?中若用扩散模型,则转化率为多少? 解:解:222241(1)111224 1.7219.489.48(1 1.72)1 1.721 1.721 1.72221 0.031 0.97AxPePeexpexpexpexp ()()当()()()当()()()()当:对全混流反应器思考题)()(,)()(:)(,)(,)()(:)(,)(,)(,)(:03EtEFtFtEtEFtFttEFtEtFtm20.218

43、思考题思考题5 5: 什么是什么是停留时间分布函数?停留时间分布函数?如果停留时间的单如果停留时间的单位为秒,那么位为秒,那么F(180)=0.9F(180)=0.9的物理意义是什么?的物理意义是什么?()()()()当()()()()当()()()()当:对平推流思考题)(,)(,)(,)(:)(,)(,)(,)(:)(,)(,)(,)(:6EFtEtFttEFtEtFttEFtEtFttmmm思考题思考题7 7:对于一般实际流型:对于一般实际流型,2 2的取值为的取值为( )( );平推流模型平推流模型2 2的取值为的取值为( )( );全混流模型;全混流模型2 2的取值的取值为为( )( )。 83 结束语结束语

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁