《2022年高一数学重要知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学重要知识点.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高一数学重要知识点 人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限的超越,才能够创建魅力永恒的价值。以下是我为你整理的高一数学重要学问点,希望你不负时间,努力向前,加油! 高一数学重要学问点1 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把探讨对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是的,不行
2、重复的。 (3)元素的无序性:集合中元素的位置是可以变更的,并且变更位置不影响集合 3、集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来a,b,c b、描述法: 区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 x?R|x-32,x|x-32 语言描述法:例:不是直角三角形的三角形 Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合
3、的关系: (1)元素在集合里,则元素属于集合,即:a?A (2)元素不在集合里,则元素不属于集合,即:aA 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+ 整数集Z 有理数集Q 实数集R 高一数学重要学问点2 复数是中学代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,常常与三角、解析几何、方程、不等式等学问综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域探讨,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何学问,相互转化的枢纽,这对拓宽学生思路,提高
4、学生解综合习题实力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必需具有的基本技能.简化运算的意识也应进一步加强. 在本章学习结束时,应当明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的学问还有待于进一步的探讨. 1.学问网络图 复数学问点网络图 2.复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生驾驭得不好,对向量的运算的几何意义的敏捷驾驭有肯定的困难.对此应仔细体会复数向量运算的几何意义,对其敏捷地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其
5、敏捷地运用有肯定的困难,特殊是开方运算,应对此仔细地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义敏捷地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有肯定难度,应仔细加以体会. 3.复数中的重点 (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点. (2)娴熟驾驭复数三种表示法,以及它们间的互化,并能精确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特殊是代数形式和三角形式的互化,以及求复数的模和辐角在解决详细问题时常常用到,是一个重点内容. (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运
6、算是复数中的主要内容,驾驭复数各种形式的运算,特殊是复数运算的几何意义更是重点内容. (4)复数集中一元二次方程和二项方程的解法. 高一数学重要学问点3 一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特殊地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的改变值与对应的x的改变值成正比例,比值为k 即:y=kx+b(k为随意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连
7、线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的随意一点P(x,y),都满意等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比
8、例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的随意一点P(x,y),都满意等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最终得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t肯定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函
9、数。设水池中原有水量S。g=S-ft。 六、常用公式: 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求随意线段的长:(x1-x2)2+(y1-y2)2(注:根号下(x1-x2)与(y1-y2)的平方和) 直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。 过两点的直线的斜率公式: 留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的依次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 高一数学重要学问点第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页