2022年高一数学科必修一知识考点.docx

上传人:h**** 文档编号:24684893 上传时间:2022-07-06 格式:DOCX 页数:14 大小:22.92KB
返回 下载 相关 举报
2022年高一数学科必修一知识考点.docx_第1页
第1页 / 共14页
2022年高一数学科必修一知识考点.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2022年高一数学科必修一知识考点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学科必修一知识考点.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年高一数学科必修一知识考点 在学习上,我们要深知学习的重要性.学习是学生的基本,至始至终都把学习摆在第一位.为了加强综合素养,不断地加强与自我的专业相关课程的学习,来完善自我。以下是我给大家整理的高一数学科必修一学问考点,希望能帮助到你! 高一数学科必修一学问考点1 函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1 假如对于区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 留意:函数的单调性是函数的

2、局部性质; (2)图象的特点 假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A)定义法: (1)任取x1,x2D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)变形(通常是因式分解和配方); (4)定号(即推断差f(x1)-f(x2)的正负); (5)下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数fg(x)的单调性与构成它的函数u=g(x)

3、,y=f(u)的单调性亲密相关,其规律:“同增异减” 留意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 9.利用定义推断函数奇偶性的步骤: 1首先确定函数的定义域,并推断其是否关于原点对称; 2确定f(-x)与

4、f(x)的关系; 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. 留意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再依据定义判定;(2)由f(-x)f(x)=0或f(x)/f(-x)=1来判定;(3)利用定理,或借助函数的图象判定. 10、函数的解析表达式 (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解

5、析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法 11.函数(小)值 1利用二次函数的性质(配方法)求函数的(小)值 2利用图象求函数的(小)值 3利用函数单调性的推断函数的(小)值: 假如函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有值f(b); 假如函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b); 高一数学科必修一学问考点2 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性, (2)元素的互异性, (3)元素的无序性, 3.集合的表示:如

6、:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 ?留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。x?R|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集

7、合间的基本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。A?A 真子集:假如A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) 假如A?B,B?C,那么A?C 假如A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 ?有n个元素的集合,含有2n个子集

8、,2n-1个真子集 三、集合的运算 运算类型交集并集补集 定义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或xB). 设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 例题: 1.下列四组对象,能构成集合的是() A某班全部高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数 2.集合a,b,c的真子集共有个 3.若集合M=y|y=x2-2x+1,xR,N=x|x

9、0,则M与N的关系是. 4.设集合A=,B=,若AB,则的取值范围是 5.50名学生做的物理、化学两种试验,已知物理试验做得正确得有40人,化学试验做得正确得有31人, 两种试验都做错得有4人,则这两种试验都做对的有人。 6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=. 7.已知集合A=x|x2+2x-8=0,B=x|x2-5x+6=0,C=x|x2-mx+m2-19=0,若BC,AC=,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合

10、A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 留意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不行以等于零, (7)实际问题中的函数的定义

11、域还要保证明际问题有意义. 相同函数的推断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一样(两点必需同时具备) (见课本21页相关例2) 2.值域:先考虑其定义域 (1)视察法 (2)配方法 (3)代换法 3.函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1

12、)平移变换 2)伸缩变换 3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的随意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:AB 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 假如y=f(u)(uM),u=g(x)(xA),则y=fg(x)=

13、F(x)(xA)称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1 假如对于区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 留意:函数的单调性是函数的局部性质; (2)图象的特点 假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单

14、调性的判定方法 (A)定义法: 1任取x1,x2D,且x1 2作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即推断差f(x1)-f(x2)的正负); 5下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性亲密相关,其规律:“同增异减” 留意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),

15、那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义推断函数奇偶性的步骤: 1首先确定函数的定义域,并推断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. (2)由f(-x)f(x)=0或f(x)/f(-x)=1来判定; (3)利用定理,或

16、借助函数的图象判定. 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1)凑配法 2)待定系数法 3)换元法 4)消参法 10.函数(小)值(定义见课本p36页) 1利用二次函数的性质(配方法)求函数的(小)值 2利用图象求函数的(小)值 3利用函数单调性的推断函数的(小)值: 假如函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有值f(b); 假如函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数

17、y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ 3.若函数的定义域为,则函数的定义域是 4.函数,若,则= 6.已知函数,求函数,的解析式 7.已知函数满意,则=。 8.设是R上的奇函数,且当时,则当时= 在R上的解析式为 9.求下列函数的单调区间: (2) 10.推断函数的单调性并证明你的结论. 11.设函数推断它的奇偶性并且求证 高一数学科必修一学问考点3 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是018

18、0 (2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的依次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所

19、以它的方程是x=x1。 斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:()直线两点, 截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0) 一般式:(A,B不全为0) 留意:1各式的适用范围 2特别的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线 高一数学科必修一学问考点第14页 共14页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁