《2022年高二上册数学知识点.docx》由会员分享,可在线阅读,更多相关《2022年高二上册数学知识点.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高二上册数学知识点 因为高二起先努力,所以前面的学问确定有肯定的欠缺,这就要求自己要制定肯定的安排,更要比别人付出更多的努力,信任付出的汗水不会白白流淌的,收获总是自己的。下面给大家带来一些关于高二上册数学学问点总结,希望对大家有所帮助。 高二上册数学学问点总结1 复合函数定义域 若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=fg(x)的定义域是D=x|xA,且g(x)B综合考虑各部分的x的取值范围,取他们的交集。 求函数的定义域主要应考虑以下几点: 当为整式或奇次根式时,R的值域; 当为偶次根式时,被开方数不小于0(即0); 当为分式时,分母不为0;当分母
2、是偶次根式时,被开方数大于0; 当为指数式时,对零指数幂或负整数指数幂,底不为0。 当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。 分段函数的定义域是各段上自变量的取值集合的并集。 由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求 对于含参数字母的函数,求定义域时一般要对字母的取值状况进行分类探讨,并要留意函数的定义域为非空集合。 对数函数的真数必需大于零,底数大于零且不等于1。 三角函数中的切割函数要留意对角变量的限制。 复合函数常见题型 ()已知f(x)定义域为A,求fg(x)的定
3、义域:实质是已知g(x)的范围为A,以此求出x的范围。 ()已知fg(x)定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。 ()已知fg(x)定义域为C,求fh(x)的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。 高二上册数学学问点总结2 1.求函数的单调性: 利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)假如恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)假如恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)假如恒f
4、(x)0,则函数yf(x)在区间(a,b)上为常数函数。 利用导数求函数单调性的基本步骤:求函数yf(x)的定义域;求导数f(x);解不等式f(x)0,解集在定义域内的不间断区间为增区间;解不等式f(x)0,解集在定义域内的不间断区间为减区间。 反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导, (1)假如函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间); (2)假如函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间); (3)假如函数yf(x)在区间
5、(a,b)上为常数函数,则f(x)0恒成立。 2.求函数的极值: 设函数yf(x)在x0及其旁边有定义,假如对x0旁边的全部的点都有f(x)f(x0)(或f(x)f(x0),则称f(x0)是函数f(x)的微小值(或极大值)。 可导函数的极值,可通过探讨函数的单调性求得,基本步骤是: (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x改变时,f(x)和f(x)值的改变状况: (4)检查f(x)的符号并由表格推断极值。 3.求函数的值与最小值: 假如函数f(x)在定义域I内存在x0,使得对随意的xI,总有f
6、(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不肯定,但在定义域内的最值是的。 求函数f(x)在区间a,b上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值; (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间a,b上的值与最小值。 4.解决不等式的有关问题: (1)不等式恒成立问题(肯定不等式问题)可考虑值域。 f(x)(xA)的值域是a,b时, 不等式f(x)0恒成立的充要条件是f(x)max0,即b0; 不等式f(x)0恒成立的充要条件是f(x)min0,即a0。 f(x)(xA)的值域是(a,b)时, 不等式f(x)0恒成立的
7、充要条件是b0;不等式f(x)0恒成立的充要条件是a0。 (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。 5.导数在实际生活中的应用: 实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,肯定要留意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。 高二上册数学学问点总结3 函数的单调性、奇偶性、周期性 单调性:定义:留意定义是相对与某个详细的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性
8、: 定义:留意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。 判别方法:定义法,图像法,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的随意x满意:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的随意x满意:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求驾驭常见基本函数的图像,驾驭函数图像变换的一般
9、规律。 常见图像改变规律:(留意平移改变能够用向量的语言说明,和按向量平移联系起来思索) 平移变换y=f(x)y=f(x+a),y=f(x)+b 留意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。 ()会结合向量的平移,理解根据向量(m,n)平移的意义。 对称变换y=f(x)y=f(-x),关于y轴对称 y=f(x)y=-f(x),关于x轴对称 y=f(x)y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(留意:它是一个偶函数) 伸缩变换:y=f(x
10、)y=f(x), y=f(x)y=Af(x+)详细参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 高二上册数学学问点总结4 1、圆的定义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径. 2、圆的方程 (1)标准方程,圆心,半径为r; (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点;当时,方程不表示任何图形. (3)求圆方程的方法: 一般都采纳待定系数法:先设后求.确定一个圆须要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,须要求出D,E,F; 另外要留意
11、多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置. 3、中学数学必修二学问点总结:直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种状况: (1)设直线,圆,圆心到l的距离为,则有; (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【肯定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定. 设圆, 两圆的位
12、置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定. 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两圆内含;当时,为同心圆. 留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 5、空间点、直线、平面的位置关系 公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内. 应用:推断直线是否在平面内 用符号语言表示公理1: 公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条
13、过该点的公共直线 符号:平面和相交,交线是a,记作=a. 符号语言: 公理2的作用: 它是判定两个平面相交的方法. 它说明两个平面的交线与两个平面公共点之间的关系:交线公共点. 它可以推断点在直线上,即证若干个点共线的重要依据. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面. 公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据 公理4:平行于同一条直线的两条直线相互平行 高二上册数学学问点总结5 一、变量间的相关关系 1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函
14、数关系不同,相关关系是一种非确定性关系. 2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. 二、两个变量的线性相关 1.从散点图上看,假如这些点从整体上看大致分布在通过散点图中心的一条直线旁边,称两个变量之间具有线性相关关系,这条直线叫回来直线. 当r0时,表明两个变量正相关; 当r0时,表明两个变量负相关. r的肯定值越接近于1,表明两个变量的线性相关性越强.r的肯定值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性. 三、解题方法 1.相关关系的推断方法一是利用散点图直观推断,二是利用相关系数作出推断. 2.对于由散点图作出相关性推断时,若散点图呈带状且区域较窄,说明两个变量有肯定的线性相关性,若呈曲线型也是有相关性. 3.由相关系数r推断时|r|越趋近于1相关性越强. 2022高二上册数学学问点第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页