《2022年初一数学知识点鲁教版.docx》由会员分享,可在线阅读,更多相关《2022年初一数学知识点鲁教版.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年初一数学知识点鲁教版 学习须要制定具体的安排,安排本身对大家有较强的约束和督促作用,安排对学习既有指导作用,又有推动作用。制定好的学习安排,是提高工作效率的重要手段。下面是我给大家整理的一些初一数学的学问点,希望对大家有所帮助。 七年级数学学问点 【生活中的轴对称】 1、轴对称图形:假如一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称:对于两个图形,假如沿一条直线对折后,它们能相互重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 3、轴对称图形与轴对称的区分:轴对称图形是一个图
2、形,轴对称是两个图形的关系。 联系:它们都是图形沿某直线折叠可以相互重合。 2、成轴对称的两个图形肯定全等。 3、全等的两个图形不肯定成轴对称。 4、对称轴是直线。 5、角平分线的性质 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 6、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 7、轴对称图形有: 等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(多数条)、线段(1条)、角(1条)、正五
3、角星。 8、等腰三角形性质: 两个底角相等。两个条边相等。“三线合一”。底边上的高、中线、顶角的平分线所在直线是它的对称轴。 9、“等角对等边”B=CAB=AC “等边对等角”AB=ACB=C 10、角平分线性质: 角平分线上的点到角两边的距离相等。 OA平分CADOEAC,OFADOE=OF 11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。 OC垂直平分ABAC=BC 12、轴对称的性质 1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。 2、假如两个图形关于某条直线对称
4、,那么对应点所连的线段被对称轴垂直平分。 3、假如两个图形关于某条直线对称,那么对应线段、对应角都相等。 13、镜面对称 1.当物体正对镜面摆放时,镜面会变更它的左右方向; 2.当垂直于镜面摆放时,镜面会变更它的上下方向; 3.假如是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样; 学生通过探讨,可能会找出以下解决物体与像之间相互转化问题的方法: (1)利用镜子照(留意镜子的位置摆放);(2)利用轴对称性质; (3)可以把数字左右颠倒,或做简洁的轴对称图形; (4)可以看像的背面;(5)依据前面的结论在头脑中想象。 初一下册数学三角形学问点 一、目标与要求 1.相识三角形,了解三角形
5、的意义,相识三角形的边、内角、顶点,能用符号语言表示三角形。 2.经验度量三角形边长的实践活动中,理解三角形三边不等的关系。 3.懂得推断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。 4.三角形的内角和定理,能用平行线的性质推出这肯定理。 5.能应用三角形内角和定理解决一些简洁的实际问题。 二、重点 三角形内角和定理; 对三角形有关概念的了解,能用符号语言表示三条形。 三、难点 三角形内角和定理的推理的过程; 在详细的图形中不重复,且不遗漏地识别全部三角形; 用三角形三边不等关系判定三条线段可否组成三角形。 四、学问框架 五、学问点、概念总结 1.三角形:由不在同始终线上的三条
6、线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类 3.三角形的三边关系:三角形随意两边的和大于第三边,随意两边的差小于第三边。 4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7.高线、中线、角平分线的意义和做法 8.三角形的稳定性:三角形的形态是固定的,三角形的这特性质叫三角形的稳定性。 9.三角形内角和定理:三角形三个内角的和等于180 推论1直角三角形的两个
7、锐角互余; 推论2三角形的一个外角等于和它不相邻的两个内角和; 推论3三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。 10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11.三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360。 12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 13.多边形的内角:多边形相邻两边组成的角叫做它的内角。 14
8、.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 七年级下册数学复习资料 线段垂直平分线: 概念:垂直且平分线段的直线叫做这条线段的垂直平分线。 性质:线段垂直平分线上的点到线段两个端点的距离相等。 OA=OB CDAB PA=PB 等腰三角形性质: (有
9、两条边相等的三角形叫做等腰三角形) 等腰三角形是轴对称图形; (一条对称轴) 等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一) 等腰三角形的两个底角相等。 (简称:等边对等角) 在一个三角形中,假如有两个角相等,那么它所对的两条边也相等。(简称:等角对等边) 等边三角形的性质:等边三角形是特别的等腰三角形,它具有等腰三角形的全部性质。 等边三角形的三条边相等,三个角都等于60; 等边三角形有三条对称轴。 轴对称的性质: 关于某条直线对称的两个图形是全等形; 对应线段、对应角相等; 对应点的连线被对称轴垂直且平分; 对应线段假如相交,那么交点在对称轴上。 初一数学学问点鲁教版第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页