《最新北京邮电大学高等数学7-7精品课件.ppt》由会员分享,可在线阅读,更多相关《最新北京邮电大学高等数学7-7精品课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、xyzo0MM 如果一非零向量垂直如果一非零向量垂直于一平面,这向量就叫做于一平面,这向量就叫做该平面的该平面的法线向量法线向量法线向量的法线向量的特征特征: 垂直于平面内的任一向量垂直于平面内的任一向量已知已知,CBAn ),(0000zyxM设平面上的任一点为设平面上的任一点为),(zyxMnMM 0必有必有00 nMM一、平面的点法式方程一、平面的点法式方程n例例 4 4 设设平平面面与与zyx,三三轴轴分分别别交交于于)0 , 0 ,(aP、)0 , 0(bQ、), 0 , 0(cR(其其中中0 a,0 b,0 c) ,求求此此平平面面方方程程.设平面为设平面为, 0 DCzByAx将
2、三点坐标代入得将三点坐标代入得 , 0, 0, 0DcCDbBDaA,aDA ,bDB .cDC 解解,aDA ,bDB ,cDC 将将代入所设方程得代入所设方程得1 czbyax平面的截距式方程平面的截距式方程x轴轴上上截截距距y轴轴上上截截距距z轴轴上上截截距距例例 5 5 求求平平行行于于平平面面0566 zyx而而与与三三个个坐坐标标面面所所围围成成的的四四面面体体体体积积为为一一个个单单位位的的平平面面方方程程.设平面为设平面为, 1 czbyaxxyzo, 1 V, 12131 abc由所求平面与已知平面平行得由所求平面与已知平面平行得,611161cba (向量平行的充要条件)(
3、向量平行的充要条件)解解,61161cba 化简得化简得令令tcba 61161,61ta ,1tb ,61tc ttt61161611 代入体积式代入体积式,61 t, 1, 6, 1 cba. 666 zyx所求平面方程为所求平面方程为定义定义(通常取锐角)(通常取锐角)1 1n2 2n 两平面法向量之间的夹角称为两平面的两平面法向量之间的夹角称为两平面的夹角夹角. ., 0:11111 DzCyBxA, 0:22222 DzCyBxA,1111CBAn ,2222CBAn 三、两平面的夹角三、两平面的夹角按照两向量夹角余弦公式有按照两向量夹角余弦公式有222222212121212121
4、|cosCBACBACCBBAA 两平面夹角余弦公式两平面夹角余弦公式两平面位置特征:两平面位置特征:21)1( ; 0212121 CCBBAA21)2( /.212121CCBBAA 例例6 6 研究以下各组里两平面的位置关系:研究以下各组里两平面的位置关系:013, 012)1( zyzyx01224, 012)2( zyxzyx02224, 012)3( zyxzyx解解)1(2222231)1(2)1(|311201|cos 601cos 两平面相交,夹角两平面相交,夹角.601arccos )2(,1 , 1, 21 n2, 2, 42 n,212142 两平面平行两平面平行21)
5、0 , 1 , 1()0 , 1 , 1( MM两平面平行但不重合两平面平行但不重合)3(,212142 21)0 , 1 , 1()0 , 1 , 1( MM两平面平行两平面平行两平面重合两平面重合.例例7 7 设设),(0000zyxP是是平平面面ByAx 0 DCz外外一一点点,求求0P到到平平面面的的距距离离. ),(1111zyxP|Pr|01PPjdn 1PNn0P 00101PrnPPPPjn ,10101001zzyyxxPP 解解 2222222220,CBACCBABCBAAn00101PrnPPPPjn 222102221022210)()()(CBAzzCCBAyyBC
6、BAxxA ,)(222111000CBACzByAxCzByAx 0111 DCzByAx)(1 P 01PrPPjn,222000CBADCzByAx .|222000CBADCzByAxd 点到平面距离公式点到平面距离公式平面的方程平面的方程(熟记平面的几种特殊位置的方程)(熟记平面的几种特殊位置的方程)两平面的夹角两平面的夹角.点到平面的距离公式点到平面的距离公式.点法式方程点法式方程.一般方程一般方程.截距式方程截距式方程. (注意两平面的(注意两平面的位置位置特征)特征)四、小结四、小结思考题思考题 若若平平面面02 zkyx与与平平面面032 zyx的的夹夹角角为为4 ,求求?
7、k思考题解答思考题解答,1)3(2)2(112)3(214cos222222 kk,1453212 kk.270 k一、一、 填空题:填空题:1 1、 平面平面0 CzByAx必通过必通过_, (其中(其中 CBA,不全为零) ;不全为零) ;2 2、平面、平面0 DCzBy_x轴;轴;3 3、平面、平面0 CzBy_x轴;轴;4 4、通过点、通过点)1,0,3( 且与平面且与平面012573 zyx平平 行的平面方程为行的平面方程为 _ _;5 5、通过、通过),0,0()0,0()0,0,(cba、三点的平面方三点的平面方 _;6 6、 平面平面0522 zyx与与xoy面的夹角余弦为面的
8、夹角余弦为_ _ _,与,与yoz面的夹角余弦为面的夹角余弦为_, 与与zox面的夹角的余弦为面的夹角的余弦为_;练练 习习 题题二、二、 指出下列各平面的特殊位置,并画出各平面:指出下列各平面的特殊位置,并画出各平面:1 1、 0632 yx;2 2、 1 zy;3 3、 056 zyx. .三、三、 求过点求过点)2,2,2( ,)1,1,1( 和和)2,1,1( 三点的三点的 平面方程平面方程 . .四、四、 点点)1,0,1( 且平行于向量且平行于向量 1,1,2 a和和 0,1,1 b的平面方程的平面方程 . .五五、 求求通通过过Z轴轴和和点点)2,1,3( 的的平平面面方方程程
9、. .六六、 求求与与已已知知平平面面0522 zyx平平 行行且且与与 三三坐坐标标面面所所构构成成的的四四面面体体体体积积为为 1 1 的的平平面面方方程程 . .一、一、1 1、(0,0,0)(0,0,0); 2 2、平行于;、平行于; 3 3、通过;、通过; 4 4、04573 zyx; 5 5、1 czbyax; 6 6、32,32,31 . .二、二、1 1、平行于、平行于轴轴z的平面;的平面; 2 2、平行于、平行于轴轴x的平面;的平面; 3 3、通过原点的平面、通过原点的平面 . .三、三、023 zyx. . 四、四、43 zyx. .五、五、03 yx. . 六、六、33222 zyx. .练习题答案练习题答案