《chap4计算机控制系统分析.ppt》由会员分享,可在线阅读,更多相关《chap4计算机控制系统分析.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2s平面与平面与z平面映射关系:平面映射关系:sTzesjcossinj TeTjT是是2 的周期函数的周期函数注意到注意到故有故有()(2)(2)jTTj TTjTkTzeeeeeeTk复变量复变量z的模及相角与复变的模及相角与复变量量s的实部和虚部的关系的实部和虚部的关系 | TRzezT图图4-1 s平面与平面与z平面平面()jTTj TTzeeeeT3s平面虚轴的映射平面虚轴的映射 s平面整个虚轴映射为平面整个虚轴映射为z平面单位圆,左半平面任平面单位圆,左半平面任一点映射在一点映射在z平面单位圆内,右半平面任一点映射在平面单位圆内,右半平面任一点映射在单位圆外。单位圆外。sj zR
2、TReT表表4-1 s平面与平面与z平面关系平面关系几何位置几何位置几何位置几何位置虚轴虚轴=0任意值任意值单位圆周单位圆周=1任意值任意值左半平面左半平面0任意值任意值单位圆内单位圆内0任意值任意值单位圆外单位圆外1任意值任意值42. 角频率角频率与与z平面相角平面相角关系关系 us 平面上频率相差采样频率整数倍的所有点,映射到平面上频率相差采样频率整数倍的所有点,映射到z平面上同一点平面上同一点。u每当每当变化一个变化一个s s 时,时,z平面相角平面相角变化变化2,即转了,即转了1周。周。u若若在在s平面虚轴上从平面虚轴上从-变化到变化到+时,时,z平面上相角将转无穷多圈平面上相角将转无
3、穷多圈。 22()()sTkkTkTT2ss2s2ss2s4224表表4-2 角频率角频率 与与z平面相角平面相角关系关系0053. s平面上的主带与旁带平面上的主带与旁带 22ss主带主带 ( 任意变化)任意变化) s平面上被分成了许多平行带子,其宽度为平面上被分成了许多平行带子,其宽度为s图图4-2 主带映射主带映射 图图4-3旁带映射旁带映射 64. s平面主带的映射平面主带的映射 图图4-5 s平面主带左半平面的映射平面主带左半平面的映射 图图4-6 s平面主带右半平面的映射平面主带右半平面的映射71. s平面实轴平行线(即等平面实轴平行线(即等频率线)的映射频率线)的映射2. s平面
4、虚轴平行线(即等平面虚轴平行线(即等衰减率线)的映射衰减率线)的映射图图4-7 等频率线的映射等频率线的映射图图4-8 等衰减率线的映射等衰减率线的映射83. s平面上等阻尼比轨迹的映射平面上等阻尼比轨迹的映射 Matlab命令命令coscotsjj 映射至映射至z平面平面 cot|TTzeezT 相关公式相关公式图图 4-9 阻尼比线及其映射阻尼比线及其映射94. s平面上等自然频率轨迹的映射平面上等自然频率轨迹的映射 所以所以 s平面平面 sincosjnnnsje1cot (/) z平面平面 coscosnnTTsTzeeecos,sinnTnRezT 图图4-10 等自然频率轨迹映射等
5、自然频率轨迹映射 10114.1 s平面和平面和z平面之间的映射平面之间的映射4.2 稳定性分析稳定性分析 4.3 稳态误差分析稳态误差分析4.4 时域特性分析时域特性分析4.5 频域特性分析频域特性分析4.6 应用实例应用实例12 连续系统稳定的充要条件连续系统稳定的充要条件: 特征根全部位于特征根全部位于s s域左半平面域左半平面 离散系统稳定的充要条件离散系统稳定的充要条件: 特征根全部位于特征根全部位于z平面单位圆中平面单位圆中131. 直接求取特征方程根直接求取特征方程根 缺点是难于分析系统参数的影响缺点是难于分析系统参数的影响 432( )1.20.070.30.080zzzzzM
6、atlab命令命令c=1 -1.2 0.07 0.3 -0.08;r=roots(c)r = -0.5000 0.8000 0.5000 0.4000系统稳定系统稳定 1122(1)( )1.30.41( )(1)( )100 x kx ku kx kx k 例例4-2 已知已知 例例 4-3 已知已知 F = -1.3 -0.4 1 0 ;g=eig(F)Matlab命令命令g = -0.8000 -0.5000系统稳定系统稳定 141011( )0nnnnza za zaza0, 0, 0, 0, 000000 mlcba10(/)nkaa0211212021nnnnnnaaaaaaaaa
7、aaa)0211211201nnnnnbbbbbbbbbb210(/)nkbb)02122340nnnncccccccc320(/)nkcc0101llll10(/)nkll0m系统稳定系统稳定条件条件1n in iibaak15判断系统稳定性步骤:判断系统稳定性步骤:(1)判断必要条件是否成立,若不成立则系统不稳定。判断必要条件是否成立,若不成立则系统不稳定。(2)若必要条件成立,构造朱利表。若必要条件成立,构造朱利表。1011( )0nnnnza za zaza或者或者11( )0( 1)( )0znzzz(1)0( 1)( 1)0n 16212( )0zza za(1)0( 1)0 12
8、1aa221)11aaa必要条件:必要条件:构造朱利表:构造朱利表:2210a2| 1a |(0)| 1|(0)| 1(1)0( 1)0 充分必要条件:充分必要条件:221 a17例例4-5 已知一采样系统的开环传递函数已知一采样系统的开环传递函数 采样周期是采样系统的一个重要参数,它的大小影响特征方程采样周期是采样系统的一个重要参数,它的大小影响特征方程的系数,从而对闭环系统的稳定性有明显的影响。的系数,从而对闭环系统的稳定性有明显的影响。10110(1)( )(1)(0.11)TTkkeG zzZssze系统的特征方程系统的特征方程 1010( )(1)0TTzzkee讨论采样周期对系讨论
9、采样周期对系统稳定性的影响。统稳定性的影响。 解:系统稳定要求特征根位于单位圆内解:系统稳定要求特征根位于单位圆内 1010|(1)| 1TTeke10101(1)1TTeke 1010(1)/(1)TTkee1k 1T 11k 0.1T 12.165k 0.01T 120k 结论:结论:当采样周期当采样周期T ,使系统稳定的使系统稳定的k值范围增大。值范围增大。当当k=2时,采样周期必须时,采样周期必须小于小于0.109 86,系统才能稳定系统才能稳定 18(1) 离散系统的稳定性比连续系统差离散系统的稳定性比连续系统差 体现在使系统稳定的体现在使系统稳定的k值:值:连续系统的连续系统的k值
10、范围大于离散系统的值范围大于离散系统的k值范围。值范围。(2) 采样周期也是影响稳定性的重要参数,采样周期也是影响稳定性的重要参数,一般来说,一般来说,T减小,系统稳定性增强。减小,系统稳定性增强。 194.1 s平面和平面和z平面之间的映射平面之间的映射4.2 稳定性分析稳定性分析 4.3 稳态误差分析稳态误差分析4.4 时域特性分析时域特性分析4.5 频域特性分析频域特性分析4.6 应用实例应用实例20单位反馈系统误差定义单位反馈系统误差定义 )(lim)(lim)()()()(*kTetetetctrtektss( )( )( )e tr tc tlim ( )sstee t连续系统:连
11、续系统:离散系统:离散系统:21 给定给定R(z)情况下的离散系统稳态误差的计算:情况下的离散系统稳态误差的计算:( )1( )( )1( ) ( )eE zzR zD z G z1( )( ) ( )( )1( ) ( )eE zz R zR zD z G z *11111lim(1) ( )lim(1)( )1( ) ( )sszzezE zzR zD z G z与输入信号与输入信号R(z)及系统及系统 结构特性均有关结构特性均有关 *sse( ) ( )D z G z22 连续系统连续系统按其开环传函中所含的积分环按其开环传函中所含的积分环节的个数节的个数 来划分来划分012( )5kG
12、 ss( )(2)kG ss s2( )()kG sssa0型型I型型II型型 离散系统离散系统按其开环传函中所含按其开环传函中所含 的的环节的个数环节的个数 来划分来划分) 1( z(0.2)( )0.5k zG zz(0.4)( )(1)(0.2)k zG zzz2(0.6)( )(1) (0.8)k zG zzz23( )1( )r tt1( )1/(1)R zz*1111111lim(1)lim1( ) ( ) (1)1( ) ( )sszzezD z G zzD z G z1111 lim( ) ( )1pzD z G zK1lim( ) ( )pzKD z G z称为稳态位置误差系
13、数称为稳态位置误差系数 对对“0”0”型系统,型系统, 在在z=1z=1处无极点处无极点, ,K Kp p为有限值为有限值 ( ) ( )D z G z对对“I”I”型系统,型系统, 在在z=1z=1处有处有1 1个极点个极点, ,( ) ( )D z G z,0pssKe 若输入为阶跃信号,对单位反馈系统,系统无稳态误差若输入为阶跃信号,对单位反馈系统,系统无稳态误差的条件是系统前向通道中至少含有的条件是系统前向通道中至少含有1 1个积分环节。个积分环节。24( )r tt2( )(1)TzR zz*1211lim(1)1( ) ( ) (1)sszTzezD z G zz1lim(1)(1
14、)( ) ( )zTzzD z G z111/1lim(1)( ) ( )vzKzD z G zT11lim(1)( ) ( )vzKzD z G zT称为稳态速度误差系数称为稳态速度误差系数 对对“0”0”型系统,型系统, 在在z=1z=1处无极点处无极点, ,( ) ( )D z G z对对“I”I”型系统,型系统, 在在z=1z=1处有处有1 1个极点个极点, ,( ) ( )D z G z0,vssKe 1,vssvKeK常值对对“II”II”型系统,型系统, 在在z=1z=1处有处有2 2个极点个极点, ,( ) ( )D z G z,0vssKe (2) 输入信号为单位斜坡信号输入
15、信号为单位斜坡信号2521( )2r tt称为稳态加速度误差系数称为稳态加速度误差系数 对对“0”0”型系统,型系统, 在在z=1z=1处无极点处无极点, ,( ) ( )D z G z对对“I”I”型系统,型系统, 在在z=1z=1处有处有1 1个极点个极点, ,( ) ( )D z G z0,assKe 1,assaKeK常值对对“II”II”型系统,型系统, 在在z=1z=1处有处有2 2个极点个极点, ,( ) ( )D z G z23(1)( )2(1)TzzR zz2*1311(1)lim(1)1( ) ( ) 2(1)sszTzzezD z G zz22111/1lim(1)(
16、) ( )azKzD z G zT2211lim(1)( ) ( )azKzD z G zT0,assKe (3) 输入信号为单位加速度信号输入信号为单位加速度信号26误差系数误差系数连续系统连续系统离散系统离散系统pKvKaK0lim( )( )sD s G s0lim( )( )ssD s G s20lim( )( )ss D s G s1lim( )( )zD z G z11lim(1)( )( )zzD z G zT2211lim(1)( )( )zzD z G zT*sse( )1( )r tt( )r tt21( )2r tt1/(1)pK1/vK1/aK0型系统型系统I型系统型系
17、统0II型系统型系统00离散系统稳态误差离散系统稳态误差 27(1)计算稳态误差前提条件是系统稳定。)计算稳态误差前提条件是系统稳定。(2)稳态误差为无限大并不等于系统不稳定,它)稳态误差为无限大并不等于系统不稳定,它只表明该系统不能跟踪所输入的信号。只表明该系统不能跟踪所输入的信号。(3)上面讨论的稳态误差只是系统原理性误差,)上面讨论的稳态误差只是系统原理性误差,只与系统结构和外部输入有关,与元器件精度无只与系统结构和外部输入有关,与元器件精度无关。关。28 系统中的干扰是一种非有用信号,由它引起的输系统中的干扰是一种非有用信号,由它引起的输出完全是系统的误差。出完全是系统的误差。误差完全
18、由干扰误差完全由干扰n(t)引起,此时有引起,此时有( )( )ne tc t 1( )( )1( ) ( )NNG zCzD z G z据终值定理,可求出系统在干扰作用下采样时刻的稳态误差据终值定理,可求出系统在干扰作用下采样时刻的稳态误差 *1111lim(1) ( )lim(1)( )ssNNzzezE zzCz 29 对对具有零阶保持器具有零阶保持器的采样系统而言,稳态误差的计算与的采样系统而言,稳态误差的计算与T T无关,只与系统的类型、输入信号的形式有关。无关,只与系统的类型、输入信号的形式有关。1)(zzskZzG22) 1()(zTzskZzG)(lim1zGKzp)(lim1
19、zGKzpTzGzTKzv1)() 1(lim11)() 1(lim11zGzTKzv0)() 1(lim1212zGzTKzaTzGzTKza1)() 1(lim1212D/A本身就是一个本身就是一个ZOH 以下为针对不具有以下为针对不具有ZOH的采样系统的计算。的采样系统的计算。304.1 s平面和平面和z平面之间的映射平面之间的映射4.2 稳定性分析稳定性分析 4.3 稳态误差分析稳态误差分析4.4 时域特性分析时域特性分析4.5 频域特性分析频域特性分析4.6 应用实例应用实例31动态特性主要是用系统在单位阶跃输入信号作用下的响应特性来描述。动态特性主要是用系统在单位阶跃输入信号作用下
20、的响应特性来描述。 超调量超调量 上升时间上升时间 峰值时间峰值时间 调节时间调节时间 图图4-16 系统阶跃响应的采样系统阶跃响应的采样 图图4-15 系统阶跃响应特性系统阶跃响应特性321极点位于实轴极点位于实轴( )iizG zczp( )kiic kc p图图4-17 z平面极点分布与脉冲响应(实极点)平面极点分布与脉冲响应(实极点)3330.126( )(1)(0.55)(0.6)(0.65)zD zzzzz30.126( )( ) ( )(1)(0.55)(0.6)(0.65)1zzC zD z R zzzzzz312110.550.60.65c zc zc zAzBzzzzzz3
21、1( )( 1)kkiiic kABc p|1( )(1)1zAC z z|1( )(1)0.015 4zBC zz稳态值为稳态值为A AB振幅为振幅为 的等幅振荡脉冲的等幅振荡脉冲 单调收敛,很快衰减为单调收敛,很快衰减为0 0 3411( )iiiiczc zG zzpzp1,|ijiiic cce1,|ijiiip ppe11111( )kkiiiiiiiic zc zc kZcpc pzpzp|iiiijj kjj kkkiiiicepecepe()()| ()iiiij kj kkiicpee2| cos()kiiiicpk2| coskiiiicpkTT振荡频率:振荡频率: 2is
22、iiT |kip振荡幅值与振荡幅值与 有关有关 35Pi=0=0,脉冲响应时间,脉冲响应时间最短,延时一拍最短,延时一拍图图4-17 z平面极点分布与脉冲响应(复极点)平面极点分布与脉冲响应(复极点)36TTTTddd82,44)2() 1 (,:极点382,4343)4() 3(TTTTddd,:极点发散, 11p收敛, 12p发散, 13p收敛, 14p374.1 s平面和平面和z平面之间的映射平面之间的映射4.2 稳定性分析稳定性分析 4.3 稳态误差分析稳态误差分析4.4 时域特性分析时域特性分析4.5 频域特性分析频域特性分析4.6 应用实例应用实例38乃奎斯特稳定判据:乃奎斯特稳定
23、判据:(1) 确定确定 的不稳定的极点数的不稳定的极点数p;(2) 以以 代入,在代入,在 范围内,画开环范围内,画开环频率特性频率特性 ;(3) 计算该曲线顺时针方向包围计算该曲线顺时针方向包围z = 1的数目的数目n;(4) 计算计算z = p n;当且仅当;当且仅当z = 0时,闭环系统稳定。时,闭环系统稳定。 注意:注意:z平面的不稳定域是单位圆外部。平面的不稳定域是单位圆外部。 离散系统特征方程离散系统特征方程 1( ) ( )0kD z G z( ) ( )kD z G zj Tze02T() ()j Tj TkD eG e39例例4-9 某单位反馈离散系统开环传递函数某单位反馈离
24、散系统开环传递函数 (1)( )(1)(0.242)k zG zzz采样周期采样周期 ,试绘制它的幅相特,试绘制它的幅相特性曲线,并分析闭环系统的稳定性。性曲线,并分析闭环系统的稳定性。0.1Ts解:该开环系统稳定,所以不稳定的极点数解:该开环系统稳定,所以不稳定的极点数p = 0 (1)()(1)(0.242)j Tj Tj Tj Tk eG eeecos() 1sin()cos() 1sin()cos()0.242sin()kTjTTjTTjT 幅相特性曲线幅相特性曲线 当当k=0.198时,频率特性不包围时,频率特性不包围z=1点,点,n=0,所以,所以 z=0,故此时闭环系统稳定;,故
25、此时闭环系统稳定; 当当 k=1时,频率特性包围时,频率特性包围z=1点一次,点一次,n=1,所以,所以 z=1,此时闭环系统不稳定;,此时闭环系统不稳定; 当当k= 0.7584,频率特性穿越,频率特性穿越z= 1点,点,此时闭环系统为临界稳定。此时闭环系统为临界稳定。40为了检验系统在达到不稳定之前,允许提高多少增益和允许增加多少为了检验系统在达到不稳定之前,允许提高多少增益和允许增加多少额外的相位滞后,离散时间系统引进幅值裕度和相位裕度的相对稳定额外的相位滞后,离散时间系统引进幅值裕度和相位裕度的相对稳定性的概念(定义与连续系统相同)性的概念(定义与连续系统相同)利用相对稳定性两个指标,
26、可以间接判断和检测闭环系统的动态特性,利用相对稳定性两个指标,可以间接判断和检测闭环系统的动态特性,如系统快速性及振荡性等。如系统快速性及振荡性等。 4.85/crad s054m11.7hdB 13.3/hrad s相位裕度相位裕度增益裕度增益裕度Matlab命令命令w=logspace(-1,3);zG=0.198 0.198; pG=1 -1.242 0.242;dbode(zG,pG,0.1,w)grid(1)( )(1)(0.242)k zG zzzk= 0. 198截止频率截止频率 414.1 s平面和平面和z平面之间的映射平面之间的映射4.2 稳定性分析稳定性分析 4.3 稳态误
27、差分析稳态误差分析4.4 时域特性分析时域特性分析4.5 频域特性分析频域特性分析4.6 应用实例应用实例42天线计算机控制系统结构图如图天线计算机控制系统结构图如图3-26所示。所示。 试求该系统使系统稳定的参数试求该系统使系统稳定的参数D(z)=kd的范围;的范围; 试确定该系统的静态误差系数以及常值干扰试确定该系统的静态误差系数以及常值干扰Un(s) 时的时的稳态误差;稳态误差; 试确定当试确定当T=0.02s、kd =10时系统的稳定裕度;时系统的稳定裕度; 计算计算T=0.02s、kd =10时时 闭环系统的单位阶跃曲线,闭环系统的单位阶跃曲线,并求系统的主要动态响应指标。并求系统的
28、主要动态响应指标。解解 (1) 系统传递函数系统传递函数2211(1)20(1)( )(1)()(10)TsTsTsKeKeeG zZZZsT sisssass101210(1)2(1)(1)10(1)()TTTzezzzzze101010(20.20.2)(0.22 )0.2(1)()TTTTezT ezze43101010210101010( )1( ) ( )(1)()(20.20.2)(0.22 )0.21(20.20.2)(0.22 )0.2)0TTTdTTTTddzD z G zzzekTezT ezeTekzekT e |(0) |1(1)0( 1)0 1010(0)(0.22
29、)0.2)1TTdekT e102(1)0Tdk Te整理,得到整理,得到0T0dk10101010(1)1 1(20.20.2) (0.22 )0.2)0 TTTTddeTekekT e10101010( 1)1 1(20.20.2) (0.22 )0.2)0 TTTTddeTekekT e101010(1)0.2(1)(1)0TTTdeeTek10101(0.22 )0.2)1 TTdekT e根据根据440dk101010(1)0.2(1)(1)0TTTdeeTek10101(0.22 )0.2)1 TTdekT edk T= 0.01 0.02 0.05 0.1 0.2 0.5100.
30、8 51.621.811.96 7.285.17结论:随着采样周期的增大,结论:随着采样周期的增大,保证系统稳定的极限放大系数减小保证系统稳定的极限放大系数减小 45 该系统为该系统为I型系统,位置误差系数型系统,位置误差系数 速度误差系数速度误差系数 由于干扰由于干扰 所引起的输出均为误差所引起的输出均为误差 pk /2vddkk kik 1( )nutT=0.02s、kd =10时时 122100.00374(0.939)( )2(10)(1) (0.8187)nzzU G zZsszz2( )( )0.00374(0.939)( )1( ) ( )1 10 ( )(1.78130.853
31、82)(1)nnnU G zU G zzzzD z G zG zzzz稳态误差:稳态误差: 210.00374(0.939)lim(1)( )0.1(1.78130.85382)(1)ssssnzzzezzzzz 46开环传递函数开环传递函数 2210 0.00374(0.939)0.03740.0351( )1.81870.81871.81870.8187zzG zzzzzMatlab命令命令num=0.0374 0.0351;den=1 -1.8187 0.8187;w=logspace(-1,3);dbode(num,den,0.02,w)grid 12.5/crad s031m14.5hdB 31.5/hrad s截止频率截止频率相位裕度相位裕度增益裕度增益裕度图图4-21 Bode图及稳定裕度图及稳定裕度47图图4-22 单位阶跃响应单位阶跃响应%21%超调量超调量0.53sts调节时间调节时间0.24pts峰值时间峰值时间48