《AAO污水处理工艺介绍解析.ppt》由会员分享,可在线阅读,更多相关《AAO污水处理工艺介绍解析.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Tongji University环境科学与工程学院环境科学与工程学院1 1、城市污水生物脱氮理论与技术、城市污水生物脱氮理论与技术生物处理过程氮的转化生物处理过程氮的转化 一、城市污水脱氮除磷工艺与模拟控制一、城市污水脱氮除磷工艺与模拟控制有机氮氨氮亚硝酸盐硝酸盐有机氮(细菌细胞)细菌分解及水解同化有机氮(净生长)氧气硝化氧气溶解及自氧化脱氮有机碳氮气环境因素:环境因素:1 1、水温、水温2 2、pHpH3 3、DO DO 4 4、C/NC/N5 5、Fm & SRTFm & SRT6 6、毒性物质、毒性物质7 7、内回流比、内回流比Tongji University环境科学与工程学院环境科
2、学与工程学院2 2、城市污水除磷技术、城市污水除磷技术 2.12.1化学除磷化学除磷 一、城市污水脱氮除磷工艺与模拟控一、城市污水脱氮除磷工艺与模拟控 2.22.2生物除磷生物除磷 Tongji University环境科学与工程学院环境科学与工程学院3 3、常规生物脱氮除磷工艺、常规生物脱氮除磷工艺3.1 A/A/O系列系列一、城市污水脱氮除磷工艺与模拟控一、城市污水脱氮除磷工艺与模拟控BardenphoBardenpho工艺工艺 典型典型A/A/OA/A/O工艺工艺 Tongji University环境科学与工程学院环境科学与工程学院3 3、常规生物脱氮除磷工艺、常规生物脱氮除磷工艺3.
3、1 A/A/O系列系列一、城市污水脱氮除磷工艺与模拟控制一、城市污水脱氮除磷工艺与模拟控制UCTUCT工工艺艺 M-UCTM-UCT工艺工艺 JHBJHB工艺工艺 Tongji University环境科学与工程学院环境科学与工程学院3 3、常规生物脱氮除磷工艺、常规生物脱氮除磷工艺3.2 SBR系列系列一、城市污水脱氮除磷工艺与模拟控制一、城市污水脱氮除磷工艺与模拟控制CASTCAST工工艺艺 MSBRMSBR工艺工艺 UNITANKUNITANK工工艺艺 Tongji University环境科学与工程学院环境科学与工程学院3 3、常规生物脱氮除磷工艺、常规生物脱氮除磷工艺3.3 氧化沟系
4、列氧化沟系列一、城市污水脱氮除磷工艺与模拟控一、城市污水脱氮除磷工艺与模拟控制制T T型氧化沟型氧化沟 奥贝尔氧化奥贝尔氧化沟沟 卡路塞尔氧化沟卡路塞尔氧化沟 卡鲁塞尔DenitIRA2/C工艺流程Tongji University环境科学与工程学院环境科学与工程学院4 4、生物脱氮除磷新工艺、生物脱氮除磷新工艺4.1 BICT工艺工艺一、城市污水脱氮除磷工艺与模拟控一、城市污水脱氮除磷工艺与模拟控制制4.2 A2/N工艺工艺4.3 BCFS工艺工艺4.4 分段进水分段进水BNR工艺工艺4.5 厌氧厌氧-往复好氧组合式工艺往复好氧组合式工艺4.1 BICT工艺工艺新工艺特点新工艺特点1、合理分
5、配碳源;、合理分配碳源;2、节约曝气量,利用硝酸盐;、节约曝气量,利用硝酸盐;3、减少污泥量;、减少污泥量;4、减小反应池容积、减小反应池容积Tongji University环境科学与工程学院环境科学与工程学院5 5、污水处理建模理论与技术、污水处理建模理论与技术一、城市污水脱氮除磷工艺与模拟控制一、城市污水脱氮除磷工艺与模拟控制5.2 处理过程的智能控制:基于任务,有效变量输入输出,实现过处理过程的智能控制:基于任务,有效变量输入输出,实现过程控制或时间控制程控制或时间控制5.3 专家控制系统:基于经验控制,不断完善和学习专家控制系统:基于经验控制,不断完善和学习5.4 模糊控制:建立模糊
6、控制器及模糊推理,简化输入输出模糊控制:建立模糊控制器及模糊推理,简化输入输出5.5 神经网络:基于系统的学习记忆和自适应能力神经网络:基于系统的学习记忆和自适应能力5.1 处理过程的动态模拟:基于模糊控制技术与处理过程的动态模拟:基于模糊控制技术与PLC技术结合技术结合5.6 混合人工智能:单一技术的局限,及各家所长混合人工智能:单一技术的局限,及各家所长5.7 ASM:基于生物生长衰亡机理、污染物降解机理。:基于生物生长衰亡机理、污染物降解机理。Tongji University环境科学与工程学院环境科学与工程学院 1.1 工艺路线研究工艺路线研究 针对南方城市污水有机物浓度低、而氮磷浓度
7、相对较高、针对南方城市污水有机物浓度低、而氮磷浓度相对较高、且进水水质水量变化大的特征,研究不同情况下低碳高氮磷城且进水水质水量变化大的特征,研究不同情况下低碳高氮磷城市污水脱氮除磷工艺中污染物的存在形态与转化规律,寻求适市污水脱氮除磷工艺中污染物的存在形态与转化规律,寻求适合于低碳高氮磷城市污水脱氮除磷的工艺及相关运行参数;合于低碳高氮磷城市污水脱氮除磷的工艺及相关运行参数; 1.2 仿真与预测仿真与预测 建立交互式反应器的脱氮除磷处理工艺的神经网络模型,建立交互式反应器的脱氮除磷处理工艺的神经网络模型,模拟与预测进出水水质和运行工况,并进行仿真与预测,满足模拟与预测进出水水质和运行工况,并
8、进行仿真与预测,满足工程实施控制的目的和要求,为示范工程的运行提供依据。同工程实施控制的目的和要求,为示范工程的运行提供依据。同时,为我国类似城市污水处理厂的设计及运行提供参考。时,为我国类似城市污水处理厂的设计及运行提供参考。 二、研究内容与技术路线二、研究内容与技术路线1 1、研究目的、研究目的Tongji University环境科学与工程学院环境科学与工程学院 2.1 传统工艺路线研究传统工艺路线研究研究传统的生物脱氮除磷工艺处理低碳高氮磷城市污水的特点与规律。研究传统的生物脱氮除磷工艺处理低碳高氮磷城市污水的特点与规律。 2.2 新工艺路线研究新工艺路线研究研究低碳高氮磷城市污水高效
9、、低消耗生物脱氮除磷工艺。研究低碳高氮磷城市污水高效、低消耗生物脱氮除磷工艺。即研究交互式反应器提高生物脱氮除磷的途径、机理以及合适运行参数。即研究交互式反应器提高生物脱氮除磷的途径、机理以及合适运行参数。 2.3 运行模式研究运行模式研究分析低碳高氮磷污水水质变化规律,寻求该型污水处理厂的运行新模式分析低碳高氮磷污水水质变化规律,寻求该型污水处理厂的运行新模式 2.4 建立神经网络进行出水水质的模拟仿真建立神经网络进行出水水质的模拟仿真2.5对比对比BP神经网络和神经网络和ANFIS模糊网络的模拟仿真的效果和稳定性。模糊网络的模拟仿真的效果和稳定性。二、研究内容与技术路线二、研究内容与技术路
10、线2 2、研究内容、研究内容Tongji University环境科学与工程学院环境科学与工程学院二、研究内容与技术路线二、研究内容与技术路线3 3、技术路线、技术路线研究技术路线图Tongji University环境科学与工程学院环境科学与工程学院1 1、工艺开发背景、工艺开发背景1.1 实现碳调控的脱氮除磷目的实现碳调控的脱氮除磷目的三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计1.2 工艺可多生化模式运行,适应不同的碳氮比污水工艺可多生化模式运行,适应不同的碳氮比污水1.3 工艺可生化工艺可生化/物化串并联运行,适应不同的除磷要求物化串并联运行,适应不同的除磷要求
11、1.4 工艺根据污水水质和排放标准,可容易切换运行模式工艺根据污水水质和排放标准,可容易切换运行模式1.5 工艺适应性强,抗冲击负荷能力强工艺适应性强,抗冲击负荷能力强1.6 根据构建的模型,使系统具有自适应和调整能力根据构建的模型,使系统具有自适应和调整能力Tongji University环境科学与工程学院环境科学与工程学院2 2、工艺概念与流程、工艺概念与流程2.1 工艺概念工艺概念三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计交互式是指可以针对不同水质水量、处理目的、环境条件灵活改变物化处理单元与生化处理单元的串并联、长短流程运行;各单元内部的功能也可改变,进行高
12、效、节能或抗冲击负荷等不同模式运行达到在一个反应器内将物化和生化优化集成、生物处理单元中各种不同功能菌群高效运行、系统高度协同开放的目的。为城市污水处理提供一种新型高效的物化/生化反应器。 Tongji University环境科学与工程学院环境科学与工程学院2 2、工艺概念与流程、工艺概念与流程2.2 平面布置平面布置三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计A. 进水井B. 交互式反应器C. 二沉池D. 鼓风机 E. 加药罐 . 反应器分区编号 交互式物化/生化反应器平面图 Tongji University环境科学与工程学院环境科学与工程学院2 2、工艺概念与流
13、程、工艺概念与流程2.3 流程布置流程布置三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计交互式物化/生化反应器流程图 Tongji University环境科学与工程学院环境科学与工程学院3 3、运行模式与控制、运行模式与控制3.1 运行模式图运行模式图三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计交互式物化/生化反应器运行模式图 高效生化工艺物化强化生化强化沉淀进水人工生态AFDEBCGTongji University环境科学与工程学院环境科学与工程学院3 3、运行模式与控制、运行模式与控制3.2 运行模式表运行模式表三、交互式反应器研究与中试装
14、置设三、交互式反应器研究与中试装置设计计运行模式运 行 状 态运行途径预期目标串联高效生化脱氮除磷处理A D 最大程度除磷,其他指标达一级排放标准高效生化/物化处理A B C达一级排放标准强化物化/生化协同处理F E G在进水水质低时达一级排放标准低氧生化/物化处理A B C节能、达到二级排放标准并联部分污水物化处理、部分污水生化处理 A DF C低水质节能运行抗冲击负荷Tongji University环境科学与工程学院环境科学与工程学院3 3、运行模式与控制、运行模式与控制3.3 运行控制目标运行控制目标三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计当原污水有机碳源不
15、能同时满足生物脱氮除磷要求时,首先满足生物脱氮,在生物处理后投加新型混凝剂强化生物除磷,确保氮磷同时达标。Tongji University环境科学与工程学院环境科学与工程学院4 4、串联运行模式研究、串联运行模式研究4.1 串联运行模式串联运行模式1三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计串联运行模式1工艺示意图正常水量、污染物浓度较高,氮磷浓度较高条件下或冬季运行时采用Tongji University环境科学与工程学院环境科学与工程学院4 4、串联运行模式研究、串联运行模式研究4.2 串联运行模式串联运行模式2三、交互式反应器研究与中试装置设三、交互式反应器研
16、究与中试装置设计计串联运行模式2工艺示意图正常水量、污染物浓度较低,夏季运行时采用Tongji University环境科学与工程学院环境科学与工程学院5 5、并联运行模式研究、并联运行模式研究三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计并联运行模式工艺示意图1、模式1:水量或水质超负荷2、模式2:COD、TN偏低时Tongji University环境科学与工程学院环境科学与工程学院6 6、中试装置设计、中试装置设计6.1 设计参数设计参数三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计单元名称长(m)宽(m)有效水深(m)有效容积(m3)合计(m
17、3)进水井第1部分1.01.01.41.403.80第2部分1.881.01.32.40反应器区0.71.03.02.1037.44区1.941.03.05.82区2.01.03.06.00区1.64+4.661.03.018.9区0.71.03.02.10区0.91.02.82.52二沉池直径:2.852.012.7512.75污泥池1.01.01.691.691.69加药罐直径:0.81.00.500.50旱季:旱季:100t/d雨季:雨季:150t/dTongji University环境科学与工程学院环境科学与工程学院6 6、中试装置设计、中试装置设计6.2 中试基地平面中试基地平面三
18、、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计Tongji University环境科学与工程学院环境科学与工程学院6 6、中试装置设计、中试装置设计6.3 中试流程中试流程三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计Tongji University环境科学与工程学院环境科学与工程学院6 6、中试装置设计、中试装置设计 6.4 相关照片相关照片三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计中试基地生物处理单元运行中的交互式反应器Tongji University环境科学与工程学院环境科学与工程学院6 6、中试装置设计、中试装置
19、设计 6.4 相关照片相关照片三、交互式反应器研究与中试装置设三、交互式反应器研究与中试装置设计计交互反应器搅拌机和循环流量监测人工湿地进水Tongji University环境科学与工程学院环境科学与工程学院1 1、运行工况、运行工况四、交互式反应器中试运行研究四、交互式反应器中试运行研究工况条件工况一工况二工况三工况四工况五试验时间(2004年,月.日)5.246.156.167.167.178.168.179.119.1210.1数据采集时间数据采集时间6.56.146.237.167.258.168.289.119.229.29反应器内水温()21.6-24.524.6-28.126.
20、1-28.625.8-27.224.7-25.7进水量平均值(m3/h)4.674.676.298.336.24平均污泥回流比110.80.50.8平均混合液回流比211.511.5HRT(h)预缺氧池0.450.450.340.250.34厌氧池1.241.240.930.700.93缺氧池1.281.280.960.720.96好氧池5.035.033.772.533.77总停留时间8864.26二沉池平均HRT(h)2.72.72.01.52.0生物反应器总体积(m3)37.4437.4437.4434.9237.44平均MLSS(mg/L)2951 2405311028772801平均
21、MLVSS(mg/L)123979496411801372平均SVI(mL/g)50.242.334.444.470.6系统总泥龄(d)44.755.226.116.317.7DO(mg/L)预缺氧池0.120.130.150.150.20厌氧池0.090.130.110.120.13缺氧池0.120.120.150.100.11好氧池1.207.800.605.750.605.500.954.400.604.05COD/TN3.383.994.233.893.95COD/TKN3.544.174.364.024.03COD/TP34.6232.9941.6539.0144.53有机负荷0.2
22、00.250.300.520.39TN负荷0.0590.0610.0700.1330.099Tongji University环境科学与工程学院环境科学与工程学院2 2、运行数据、运行数据四、交互式反应器中试运行研究四、交互式反应器中试运行研究水质指标工况一工况二工况三工况四工况五COD进水(mg/L)82.46570.8106.9133.6出水(mg/L)19.916.215.616.522.7去除率(%)75.875.178.084.683.0SS进水(mg/L)4740584240出水(mg/L)2422221621去除率(%)48.945.062.161.947.5NH4+-N进水(m
23、g/L)19.4716.4815.924.4829.29出水(mg/L)1.429.281.254.8319.67去除率(%)92.743.792.180.332.8TN进水(mg/L)24.3716.2816.7427.4533.86出水(mg/L)14.4412.8412.7415.7523.39去除率(%)40.721.123.942.630.9TP进水(mg/L)2.381.971.72.743出水(mg/L)2.171.611.552.250.71去除率(%)8.818.38.817.976.3NO2-N进水(mg/L)0.240.070.030.010.00出水(mg/L)0.10
24、0.090.250.850.48NO3-N进水(mg/L)0.840.610.490.850.73出水(mg/L)12.135.3510.5610.692.82pH进水7.387.387.457.457.45出水7.047.207.127.087.39碱度进水(mg/L)278208210208262出水(mg/L)12016211699202Tongji University环境科学与工程学院环境科学与工程学院3 3、中试运行小结、中试运行小结 3.1 结论结论1四、交互式反应器中运行研究四、交互式反应器中运行研究水温为21.628.3,进水COD为13.2179.4mg/L、SS为1221
25、8mg/L,平均有机负荷在0.52 kgCOD/(kgMLVSSd)以下时,AAO运行模式各工况对COD和SS均有良好的去除效果,受冲击负荷影响很小,处理出水COD低于35mg/L、SS低于24mg/L。试验结果表明,当有机负荷在0.2 kgCOD/(kgMLVSSd)以上时,COD平均去除率可在70%以上。AAO运行模式中,COD的去除主要发生在反应器的厌氧区和缺氧区。 3.2 结论结论2进水NH4+-N为2.0933.28mg/L、TN2.8839.39mg/L,水温21.628.3,泥龄15d时,要保持良好的硝化效果,则COD负荷和TN负荷应分别小于0.5 kgCOD/(kgMLVSSd
26、)和0.10 kgTN/(kgMLVSSd)。当NH4+-N去除率80%,由于进水的平均COD/TKN90,进水COD90mg/L,且COD/TN3.3时,TN的去除主要通过反硝化作用,而且绝大部分在厌氧区内反硝化去除,增大混合液回流比对脱氮效率的提高贡献不大。 Tongji University环境科学与工程学院环境科学与工程学院3 3、中试运行小结、中试运行小结 3.3 结论结论3四、交互式反应器中运行研究四、交互式反应器中运行研究进水COD180mg/L,且平均COD/TN80%时,由于碳源严重不足,脱氮效率不高,随回流污泥进入厌氧区的NO3-N对生物除磷效果造成不利影响,TP去除率在5
27、0%以下。当NH4+-N去除率50%,且进水COD超过60mg/L时,进入厌氧区的硝酸盐浓度持续低于2.0mg/L,系统的生物除磷能力逐渐加强;当进水COD持续在100mg/L以上时,出水TP可在1.0mg/L以下。虽然进入厌氧区的NO3-N对除磷有不利影响,但系统的除磷功能不会丧失殆尽,但是降雨引起的进水COD急剧下降能导致系统除磷功能完全丧失 3.4 结论结论4低碳高氮磷城市污水,因碳源不足,采用AAO模式时,一旦出水NH4+-N和TN满足城镇污水处理厂污染物排放标准(GB 18918-2002)中的一级B标准,出水TP不达标。建议采用生物脱氮法保证出水氮达标,投加混凝剂保证出水磷达标。
28、Tongji University环境科学与工程学院环境科学与工程学院3 3、中试运行小结、中试运行小结 3.5 结论结论5四、交互式反应器中运行研究四、交互式反应器中运行研究交互式反应器系统AAO运行模式下,降雨季节,进水COD较低,SVI基本50mL/g,MLVSS/MLSS降雨频繁时有下降的趋势,在0.250.4雨水较少时,SVI和MLVSS/MLSS均有升高的趋势,SVI在5090mL/g,MLVSS/MLSS在0.40.5之间。 3.6 结论结论6增加抗冲击负荷能力措施:增大混合液回流比;加大系统进水流量;维持反应器系统MLVSS在1000mg/L以上;投加混凝剂。当进水COD平均值
29、小于70mg/L,为提高系统抗冲击负荷的能力,保证出水氨氮达标,可将HRT缩短为4h,以增加污泥的有机负荷,减缓污泥的内源呼吸过程,维持系统MLVSS在1000mg/L以上。考虑到低碳高氮磷城市污水的脱氮和抗冲击负荷能力,系统的混合液回流比宜在12之间,污泥回流比宜在0.51.0之间。 Tongji University环境科学与工程学院环境科学与工程学院1 1、BPBP神经网络技术神经网络技术 1.1 特点特点五、交互式反应器五、交互式反应器BP神经网络模型研究神经网络模型研究(1)高度的并行性;(2)高度的非线性全局作用;(3)良好的容错性与联想记忆功能;(4)强大的自适应、自学习功能。
30、1.2 设计设计(1)网络的层数(输入层、隐含层、输出层);(2)隐含层的神经元数量;(3)传递函数(Sigmoid)Tongji University环境科学与工程学院环境科学与工程学院2 2、交互式反应器、交互式反应器BPBP神经网络模型神经网络模型 2.1 双隐含层双隐含层MIMO五、交互式反应器五、交互式反应器BP神经网络模型研究神经网络模型研究 2.2 双隐含层双隐含层MISO(1)记忆能力强;(2)自学能力和抗干扰能力差;(3)训练时间长(4)模拟结果较差(1)记忆能力强;(2) 预测能力差(3)自学能力和抗干扰能力差;(4)训练时间长 2.3 单隐含层单隐含层MISO(1)预测表
31、现稳定;(2) 预测能力强;(3)训练速度快;(4)神经元数量以10个为宜Tongji University环境科学与工程学院环境科学与工程学院3 3、BPBP神经网络模型模拟结果神经网络模型模拟结果 3.1 出水出水NH3-N预测预测五、交互式反应器五、交互式反应器BP神经网络模型研究神经网络模型研究 3.2 出水出水TN预测预测A:输入进水:COD、SS、NH3-N、NO3-NB:输入进水:COD、SS、NH3-N、TN(1)二组相关系数基本一样(2)A组预测性优于B组A:输入进水:COD、SS、NH3-N、TPB:输入进水:COD、SS、TN、TP(1)二组相关系数基本一样(2)A组预测
32、数据、训练数据均优于B组 3.3 出水出水NO2-N预测预测A:输入进水:COD、NO3-N、NO2-N、NH3-NB:输入进水: COD、NO3-N、NO2-N、TN(1)二组训练误差接近(2)A组预测数据误差优于B组Tongji University环境科学与工程学院环境科学与工程学院3 3、BPBP神经网络模型模拟结果神经网络模型模拟结果 3.4 出水出水NO3-N预测预测五、交互式反应器五、交互式反应器BP神经网络模型研究神经网络模型研究A:输入进水:COD、NO3-N 、NO2-N、NH3-NB:输入进水:COD、 NO3-N 、NO2-N、 TN(1)预测误差接近,A组训练误差小(
33、2)二组误差均较大C:输入进水:COD、NO3-N 、NO2-N、NH3-N、TN 隐含层神经元个数由10增加为12(3) 误差依然较大:原始数据变化幅度大;进水NO3-N 较小时,对网络性能影响大;数据量和数据精度有限 3.5 出水出水TP预测预测A:输入进水:COD、SS、TP、NH3-NB:输入进水: COD、SS、TP、TN(1)二组训练误差接近(2)B组预测数据误差优于A组,但二组预测误差均较大(3)进水中TP浓度低;测量误差致出水TP大于进水;数据规律性差Tongji University环境科学与工程学院环境科学与工程学院1 1、ANFISANFIS网络模型网络模型 1.1 特点
34、特点六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究(1)很好的推理功能;(2)较强自学习能力;(3)理解经验语言;(4)融合神经网络与模糊推理。 1.2 设计设计(1) MathWorks公司的MATLAB计算语言;(2)ANFIS模型结构:多输入但输出、单输出;(3)隶属度函数(gaussmf)Tongji University环境科学与工程学院环境科学与工程学院2 2、ANFISANFIS网络模型设计网络模型设计 2.1 输入输出输入输出六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究 2.2 隶属度函数隶属度函数(1)与BP网络一致:4输入单输出(1
35、)2个;(2) 3个(3)3个隶属度函数在训练模拟精度较高;预测误差较大(4)确定用2个隶属度函数Tongji University环境科学与工程学院环境科学与工程学院3 3、ANFISANFIS网络模型模拟网络模型模拟 3.1 出水出水NH3-N预测预测六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究输入进水:COD、SS、NH3-N、NO3-N(1) 训练误差、测试误差均优于BP网络(2) 模拟数据稳定性好隶属度函数个数相关系数标准均方差隶属度函数训练数据测试数据训练数据测试数据20.7380.4695.21577.3403gaussmf;outmfType=consta
36、ntTongji University环境科学与工程学院环境科学与工程学院3 3、ANFISANFIS网络模型模拟网络模型模拟 3.2 出水出水TN预测预测六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究输入进水:COD、SS、NH3-N、TP(1) 预测效果优于BP网络(2) 预测性误差小隶属度函数个数相关系数标准均方差隶属度函数训练数据测试数据训练数据测试数据20.8160.5283.95714.7765gaussmf;outmfType=constantTongji University环境科学与工程学院环境科学与工程学院3 3、ANFISANFIS网络模型模拟网络模型
37、模拟 3.3 出水出水NO2-N预测预测六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究输入进水:COD、NO3-N、NO2-N、NH3-N(1) 训练误差测试误差均大于BP网络(2) 预测效果差于BP网络(3) 隶属度函数不适合隶属度函数个数相关系数标准均方差隶属度函数训练数据测试数据训练数据测试数据20.8780.8033.17366.6171gaussmf;outmfType=constantTongji University环境科学与工程学院环境科学与工程学院3 3、ANFISANFIS网络模型模拟网络模型模拟 3.4 出水出水NO3-N预测预测六、交互式反应器六、交
38、互式反应器ANFIS仿真模型研究仿真模型研究输入进水:COD、NO3-N、NO2-N、NH3-N(1) 训练误差测试误差均小于BP网络(2) 预测效果好于BP网络(3) 隶属度函数调整可进一步提高精度隶属度函数个数相关系数标准均方差隶属度函数训练数据测试数据训练数据测试数据20.610.212.73332.2462gaussmf;outmfType=constantTongji University环境科学与工程学院环境科学与工程学院3 3、ANFISANFIS网络模型模拟网络模型模拟 3.5 出水出水TP预测预测六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究输入进水:CO
39、D、SS、TP、TN(1) 训练误差测试误差均小于BP网络(2) 预测效果好于BP网络(3) 模拟相关系数较高隶属度函数个数相关系数标准均方差隶属度函数训练数据测试数据训练数据测试数据20.7840.7491.00152.5860gaussmf;outmfType=constantTongji University环境科学与工程学院环境科学与工程学院4 4、ANFISANFIS与与BPBP网络对比网络对比六、交互式反应器六、交互式反应器ANFIS仿真模型研究仿真模型研究(1)在相同数据基础上,ANFIS系统的模拟误差更小 (2) ANFIS系统的模拟结果更稳定,多次模拟时其结果不会发生太大的变
40、化,而神经网络的模拟结果每次都有很大的不同,造成使用者对最佳模拟精度无法掌握。究其原因:主要是因为ANFIS系统事先根据前人经验设置了初始隶属度函数,可以避免训练过程中收敛于局部最小点;而神经网络在初始时刻给出的权重矩阵是随机的,训练过程中很容易陷入局部最小点。 (3)通过两种网络对TP的模拟可以看出,对于变化范围较小的数据用ANFIS能更好的体现其走势 (4)两种网络的模拟误差均不是特别理想。主要是因为1)数据测量不够准确,而且数据时间间隔不合理;2)存在一部分超出平均值很多的非合理数据;3)数据量太少;4)从ANFIS模拟过程的各误差曲线可以看出,文中采用的模型结构还不是太合理,还有很大的
41、改进空间。 Tongji University环境科学与工程学院环境科学与工程学院1 1、结论、结论七、结论与建议七、结论与建议(1)中试研究发现污泥驯化调试主要任务培养硝化菌; (2)交互式反应器AAO (厌氧缺氧好氧)运行模式在HRT=48h、污泥回流比为0.51.0、混合液回流比为12时,COD的去除主要发生在厌氧区和缺氧区。TN去除率随进水COD及COD/TN的增加而增加。TN的去除主要发生在厌氧区,增大混合液回流比对提高脱氮效率无益,但可提高抗冲击负荷能力。(3)在ALO运行模式中,通过在低氧区进水端设置缺氧区,使易生物降解碳源优先用于短程反硝化,节省的碳源则用于聚磷菌的厌氧释磷以及
42、后续的短程反硝化,提高了氮、磷去除率,降低了空气消耗量。ALO运行模式具有高效脱氮同时兼顾除磷,对低C/N城市污水的脱氮除磷具有实际意义 。(4)水温低于18,短程硝化现象逐步减弱直至消失。为提高系统的硝化效果,可按AO脱氮模式运行。 当反应水温在1012,污泥回流比和混合液回流比分别为1.5和2,通过延长HRT为12h,可使系统的NH4+-N和TN去除率达到35%以上。Tongji University环境科学与工程学院环境科学与工程学院1 1、结论、结论七、结论与建议七、结论与建议(5)BP神经网络采用MISO模式较好; 双隐含层的神经元数量一般为5或6; 单隐含层的神经元数量在10左右较
43、好。 同一个神经网络结构随着神经元个数的增加,训练数据的精度越来越高,但测试数据的精度一般是随着神经元个数的增加升高后再降低。 (6)自适应神经网络(ANFIS)隶属度函数一般2个就可以满足基本要求,函数的型式可采用gbellmf或gaussmf等。模拟效果和稳定性基本优于BP网络。 Tongji University环境科学与工程学院环境科学与工程学院2 2、建议、建议七、结论与建议七、结论与建议(1)为了便于交互式反应器的应用与推广,应该进行基于不同水质的不同工况运行的自动切换与控制系统研究。 (2) BP神经网络训练数据的数量决定了训练时间的长短,随数据量的增加,训练时间越来越长,在线控制时可能造成控制不及时; 建议通过与其它算法如遗传算法等结合,以改进训练速度和效果,获得较优的神经网络结构。 对于不同的水质指标,采用不同的BP神经网络结构或ANFIS自适应模糊神经网络系统进行模拟仿真,以获得较好的仿真效果。 (3)在模拟仿真参数中,增加处理工艺过程的运行参数,或设定出水水质指标值,将运行参数作为网络的输出值,以便与PLC控制系统结合,控制污水处理过程系统的自动运行,获得最佳的运行效果。 Tongji University环境科学与工程学院环境科学与工程学院2008年年12月月结束结束