《2022年高三数学重点复习必考知识点整理精选5篇.docx》由会员分享,可在线阅读,更多相关《2022年高三数学重点复习必考知识点整理精选5篇.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三数学重点复习必考知识点整理精选5篇 只有高效的学习方法,才可以很快的驾驭学问的重难点。有效的读书方式依据规律驾驭方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的驾驭学问。下面就是我给大家带来的高三数学复习学问点,希望对大家有所帮助! 高三数学复习学问点1 1.满意二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,全部这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。 2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面
2、区域)。 3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或0),另一部分对应二元一次不等式Ax+By+C0(或0)。 4.已知平面区域,用不等式(组)表示它,其方法是:在全部直线外任取一点(如本题的原点(0,0),将其坐标代入Ax+By+C,推断正负就可以确定相应不等式。 5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特别点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表
3、示的平面区域的公共部分,留意边界是实线还是虚线的含义。“线定界,点定域”。 6.满意二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。全部整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。 7.画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。 8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在
4、直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。 9.从实际问题中抽象出二元一次不等式(组)的步骤是: (1)依据题意,设出变量; (2)分析问题中的变量,并依据各个不等关系列出常量与变量x,y之间的不等式; (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。 高三数学复习学问点2 一、充分条件和必要条件 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 二、充分条件、必要条件的常用推断法 1.定义法:推断B是A的条件,事实上就是推断B=A或者A=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义推
5、断即可 2.转换法:当所给命题的充要条件不易推断时,可对命题进行等价装换,例如改用其逆否命题进行推断。 3.集合法 在命题的条件和结论间的关系推断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若AB,则p是q的充分条件。 若AB,则p是q的必要条件。 若A=B,则p是q的充要条件。 若AB,且BA,则p是q的既不充分也不必要条件。 三、学问扩展 1.四种命题反映出命题之间的内在联系,要留意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; (2)同时否定
6、命题的条件和结论,所得的新命题就是原来的否命题; (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这亲密的联系,故在推断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面推断较难时,可转化为应用该命题的逆否命题进行推断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。 高三数学复习学问点3 一个推导 利用错位相减法推导等比数列的前n项和: Sn=a1+a1q+a1q2+a1qn-1, 同乘q得:qSn=a1q+a1q2+a1q3+a1qn, 两式相减得(1-q)Sn=a1-a1qn
7、,Sn=(q1). 两个防范 (1)由an+1=qan,q0并不能马上断言an为等比数列,还要验证a10. (2)在运用等比数列的前n项和公式时,必需留意对q=1与q1分类探讨,防止因忽视q=1这一特别情形导致解题失误. 三种方法 等比数列的推断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n2且nN_,则an是等比数列. (2)中项公式法:在数列an中,an0且a=anan+2(nN_,则数列an是等比数列. (3)通项公式法:若数列通项公式可写成an=cqn(c,q均是不为0的常数,nN_,则an是等比数列. 注:前两种方法也可用来证明一个
8、数列为等比数列. 高三数学复习学问点4 向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作ab。若a、b不共线,则ab的模是:ab=|a|b|sina,b;ab的方向是:垂直于a和b,且a、b和ab按这个次序构成右手系。若a、b共线,则ab=0。 向量的向量积性质: ab是以a和b为边的平行四边形面积。 aa=0。 ab=ab=0。 向量的向量积运算律 ab=-ba; (a)b=(ab)=a(b); (a+b)c=ac+bc. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 高三数学复习学问点5 基本领件的定义: 一次试验连同其中可能出现的每一个结果称为一个基本领
9、件。 等可能基本领件: 若在一次试验中,每个基本领件发生的可能性都相同,则称这些基本领件为等可能基本领件。 古典概型: 假如一个随机试验满意:(1)试验中全部可能出现的基本领件只有有限个; (2)每个基本领件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型. 古典概型的概率: 假如一次试验的等可能事务有n个,考试技巧,那么,每个等可能基本领件发生的概率都是;假如某个事务A包含了其中m个等可能基本领件,那么事务A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)推断是否是等可能事务,并用字母表示事务; (3)求出基本领件总数n和事务A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本领件总数及事务A包含的基本领件的个数。 高三数学重点复习必考学问点整理精选5篇第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页