《知识点应力状态理论和强度理论.doc》由会员分享,可在线阅读,更多相关《知识点应力状态理论和强度理论.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版名师归纳总结学习必备欢迎下载知识点9:应力状态理论和强度理论一、应力状态理论(一)应力状态的概念一般情况下、 受力构件内各点的应力是不同的、 且同一点的不同方位截面上应力也不相同。 过构件内某一点不同方位上总的应力情况、 称为该点的应力状态。研究一点的应力状态、 通常是围绕该点截取一个微小的正六面体(即单元体)来考虑。 单元体各面上的应力假设是均匀分布的、 并且每对互相平行截面上的应力、 其大小和性质完全相同、 三对平面上的应力代表通过该点互相垂直的三个截面上的应力。 当单元体三个互相垂直截面上的应力已知时、 可通过截面法确定该点任一截面上的应力
2、。截取单元体时、 应尽可能使其三个互相垂直截面的应力为已知。单元体上切应力等于零的截面称为主平面、 主平面上的正应力称为主应力。过受力构件内任一点、 一定可以找到一个由三个相互垂直主平面组成的单元体、 称为主单元体。它的三个主应力通常用 、 和 来表示、 它们按代数值大小顺序排列、 即 。一点的应力状态常用该点的三个主应力来表示、 根据三个主应力的情况可分为三类: 只有一个主应力不等于零时、 称为单向应力状态; 有两个主应力不等于零时、 称为二向应力状态(或平面应力状态);三个主应力都不等于零时、 称为三向应力状态。 其中二向和三向应力状态称为复杂应力状态、 单向应力状态称为简单应力状态。5研
3、究一点的应力状态是对构件进行强度计算的基础。(二)平面应力状态的分析分析一点的平面应力状态有解析法和图解法两种方法、 应用两种方法时都必须已知过该点任意一对相互垂直截面上的应力值、 从而求得任一斜截面上的应力。精品学习资料第 1 页、 共 10 页名师归纳总结学习必备欢迎下载应力圆和单元体相互对应、 应力圆上的一个点对应于单元体的一个面、 应力圆上点的走向和单元体上截面转向一致。应力圆一点的坐标为单元体相应截面上的应力值;单元体两截面夹角为、 应力圆上两对应点中心角为;应力圆与轴两个交点的坐标为单元体的两个主应力值;应力圆的半径为单元体的最大切应力值。在平面应力状态中、 过一点的所有截面中、
4、必有一对主平面、 也必有一对与主平面夹角为的最大(最小)切应力截面。在平面应力状态中、 任意两个相互垂直截面上的正应力之和等于常数。x 轴垂直图 9-1(a)所示单元体为平面应力状态的一般情况。单元体上、 与的平面称为 x 平面、 其上有正应力x 和切应力xy;与 y 轴垂直的平面称为y 平面、 yx ;与 z 轴垂直的 z 平面上应力等于零、 该平面是主平其上有正应力y 和切应力面、 其上主应力为零。平面应力状态也可用图9-1 (b)所示单元体的平面图来表示。设正应力以拉应力为正、 切应力以截面外法线顺时针转90 所得的方向为正、 反之为负。(a)(b)(c)图9-1图 9-1 ( c)所示
5、斜截面的外法线与x 轴之间的夹角为。规定角从 x 轴逆时针向转到截面外法线n 方向时为正。斜截面上的正应力和切应力为:xyxycos2sin 2xy22xysin 2cos2xy2最大正应力和最小正应力2xyxymax2xy22min精品学习资料第 2 页、 共 10 页名师归纳总结学习必备欢迎下载最大正应力和最小正应力是平面应力状态的两个主应力、 其所在截面即为两个主平面、 方位由下式确定:2xytan20xy最大切应力和最小切应力2xymax2xy2min最大切应力和最小切应力所在截面相互垂直、 且和两个主平面成45 、 其方位由下式确定:xytan 212xy(三)平面应力状态分析的图解
6、法在、 直角坐标系中、 平面应力状态可用一个圆表示、 如图29-2 所示。xyxy2x其圆心坐标为,0、 半径为。该圆周上任一点的坐标22都对应着单元体上某一个截面上的应力、 这个圆称为应力圆。xy 22R()xy2RCxy2图 9-2(四)三向应力状态精品学习资料第 3 页、 共 10 页名师归纳总结学习必备欢迎下载在三向应力状态分析中、 通常仅需求出最大(最小)正应力和最大切应力。如欲求空间任意斜截面上的应力、 则应用截面法求得。在三向应力状态中、 如已知一个主应力值和另外两对非主平面上的正应力和切应力、 应由两对非主平面上的正应力和切应力分别求出另外两个主应力、 然后根据三个主应力的大小
7、分别写出1、 2 和 3。(五)广义虎克定律与体积变形1 广义虎克定律广义虎克定律表示复杂应力状态下的应力应变关系、 虎克定律 表示单向应力状态的应力应变关系。工程实际中、 常由实验测得构件某点处的应变、 这时可用广义虎克定律求得该点的应力状态。以主应力表示的广义虎克定律1E 1 E 1E(3 )112()2231()3312式中1、 2、 3 为代数值、 各主应变1、 2、 3 的代数值间相应地有1 2 3。如果单元体的各面上既有正应力又有切应力时、 不计切应力对单元棱边的长度变化的影响、 广义虎克定律为1E 1 E 1Exy() ,xxyzxyGyz(x ) ,yyzyzGzx() ,zz
8、xyzxG2体积变形精品学习资料第 4 页、 共 10 页名师归纳总结学习必备欢迎下载图 9.3图 9-3 所示单元体的单位体积变化(即体积变形)为1 2 313设平均主应力m(12 3)、 则体积改变虎克定律为mKE2式中 K、 称为体积弹性模量。3(1)(六)平面应变分析本章所指平面应变状态是平面应力所对应的应变状态、 不同于弹性力学中的平面应变状态、 研究的范围仅限于应变发生在同一平面内的平面应变状态。切应变为零方向上的线应变称为主应变、 各向同性材料的主应力和主应变方向相同。在用实测方法研究构件的变形和应力时、 一般是用电测法测出一点处几个方向的应变、 然后确定主应变及其方向、 进行应
9、变分析。在进行一点的平面应变分析时、 首先应测定该点的三个应变分量x、 y和 xy。由于切应变难以直接测量、 一般先测出三个选定方向1、 2 、 3 上的线应变、 然后求解下列联立方程式精品学习资料第 5 页、 共 10 页名师归纳总结学习必备欢迎下载xyxyxy2xycos2sin 211122xyxycos2sin 2222222xy2xyxycos2sin 233322即可求得x、 y 和 xy。实际测量时、 常把1、 2 、 3 选取便于计算的数值、 得到简单的计算式、 以简化计算。如选取1 、 2 、 3、 则得到x0y902xy04590主应变的数值22122090()()0454
10、59022主应变方向245090tan20090一点的应变分析完成后、 可用广义虎克定律求得该点的应力状态。二、强度理论(一)强度理论的概念杆件在轴向拉伸时的强度条件为NA式中许用应力(s或0.2 )、 为材料破坏时的应力、 塑性材料以屈服极限n为其破坏应力、 而脆性材料则以强度极限b 为其破坏应力。 简单应力状态的强度条件是根据试验结果建立的。精品学习资料第 6 页、 共 10 页名师归纳总结学习必备欢迎下载材料的破坏形式大致可分为两种类型:一种是塑性屈服;另一种是脆性断裂。不同的破坏形式有不同的破坏原因。关于材料破坏原因的假说称为强度理论。这些假说认为在不同应力状态下、 材料某种破坏形式是
11、由于某一种相同的因素引起的。这样、 便可以利用轴向拉伸的试验结果、 建立复杂应力状态下的强度条件。( 二) 四种常用的强度理论最大拉应力理论(第一强度理论)这一理论认为:最大拉应力是引起材料断裂破坏的主要因素。第一强度理论的强度条件是最大拉应变理论(第二强度理论)这一理论认为:最大拉应变是引起材料断裂破坏的主要因素。第二强度理论的强度条件是( ) 这一理论假设材料直到断裂前服从虎克定律。最大切应力理论(第三强度理论)这一理论认为:材料发生塑性屈服的主要因素是最大切应力。第三强度理论的强度条件是形状改变比能理论(第四强度理论)这一理论认为:材料发生塑性屈服的主要因素是形状改变比能。第四强度理论的
12、强度条件是12222(2 )(3 )(1 )123(三)强度理论的应用与相当应力运用强度理论解决工程实际问题、 应当注意其适用范围。脆性材料一般是发生脆性断裂、 应选用第一或第二理论、 而塑性材料的破坏形式大多是塑性屈服、 应选用第三或第四强度理论。精品学习资料第 7 页、 共 10 页名师归纳总结学习必备欢迎下载工程实际中、 常将强度条件中与许用应力 进行比较的应力称为相当应力、 用xd 表示。上述四种强度理论的强度条件、 可写成统一的形式xdi(i 1、 2、 3、 4)四种强度理论的相当应力分别是xdxd ( )xd 12222(2 )(3 )(1 )xd 4123三、难题解析【例 1】
13、 一点处的平面应力状态如图9-4(a)所示。已知60MPa、 x40MPa、 30MPa、 30 。试求yxy(1)斜面上的应力;(2)主应力、主平面;(3)绘出主应力单元体。(a)(b)图 9-4解:( 1)斜面上的应力xyxycos2sin 2xy240224026060cos( 60)30sin(60)9.02MPa精品学习资料第 8 页、 共 10 页名师归纳总结学习必备欢迎下载xysin 2cos 2xy260402sin(60)30 cos(60)58.3MPa(2)主应力、主平面xyxy22()68.3MPaxymax22xyxy22()48.3MPaxymin22所以68.3M
14、Pa,0,48.3MPa123主平面的方位角为26040xy0.6tan 2060xy15.5015.590105.50由此可知、 主应力1 方向:15 .5、 主应力3 方向:105.500(3)绘制主应力单元体、 如图9-4 (b)所示。【例 2】如图 9-5 所示圆柱体、 在刚性圆柱形凹模中轴向受压、 压应力为。试计算圆柱体的主应力与轴向变形、 材料的弹性模量与泊松比分别为E 与、 圆柱长度为 l。图 9-5解:在凹模中的轴向压缩圆柱体、 由于其横向变形受阻、 其侧面也受压、 压 强值用 p 表示。精品学习资料第 9 页、 共 10 页名师归纳总结学习必备欢迎下载对于侧面均匀受压的圆柱体、 其内任一点处的任一纵截面上、 压应力值均等于侧压 p。因此、 根据广义胡克定律、 并设圆柱体的直径为d、 则其横向变形为dEdEdppp1由于横向变形为零、 于是得p1所以、 圆柱体内各点处的主应力为、 1231其轴向变形则为2lEl1E2ll211精品学习资料第 10 页、 共 10页