《最完整北师大版九年级上册数学全册教案集(超详细).doc》由会员分享,可在线阅读,更多相关《最完整北师大版九年级上册数学全册教案集(超详细).doc(84页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版第一章特殊平行四边形1.1菱形的性质与判定第课 时1例 :已知 : 在菱形于点 O.求证: AC BD, AC平分 BAD和 BCD,BD平分 ABC和 ADC.中,对角线AC、 BD相交【教学目标】1. 掌握菱形的概念、性质。2. 掌握菱形的性质定理“菱形的四条边相等”。3. 掌握菱形的性质定理“菱形的对角线互相垂 直,并且每条对角线平分一组对角”。4. 探索菱形的对称性。【教学重难点】重点 : 菱形的性质 .难点 : 菱形的轴对称需要用折叠和推理相结合的方ABCD分析 :由菱形的定义得 ABD是什么三角形?法,是本节的教学难点【教学过程】 一
2、、复习引入观察以下由火柴棒摆成的图形,议一议:.BO与 OD有什么关系?根据什么?由此可得系?根据什么? 证明: 四边形有何关系?与 BAD有何关AC 与 BDABCD是菱形, AB=AD(菱形的定义) ,BO =OD ( 平行四边形的对角线互相平分) AC BD , AC 平分 BAD ( 等腰三角形三线合 一的性质) .同理, AC平分 BCD,BD平分 ABC和 ADC,(2)与图一相比,图二与图三有什么共同的特点?目的是让学生经历菱形的概念,性质的发现过程, 并让学生注意以下几点:( 1)要使学生明确图二、图三都为平行四边形;( 2)引导学生找出图二、图三与图一在边方面的差 异 .二、
3、探究新知再用多媒体教科书中有关菱形的美丽图案,让学 对角线AC 和BD分别平分一组对角.由定理 2 可以得出菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴. 另外,还可以从折叠来说明轴对称性. 同时指出以上两个性质只是菱形不同于一般平行四边形的特殊性质. 菱形还具有平行四边形的所有共性,比如: 菱形是中心对称图形,对称中心为两条对角线的交点三、范例点击 例 : 在菱形.生感受菱形具有工整,匀称,美观等许多优点.ABCD 中,对角线AC 、BD 相交于点O, 菱形也是特殊的平行四边形,所以它除具有一般BAC=30 , BD=6, 求菱形的边长和对角线AC 的长 .平行四边形的性质外还具
4、有一些特殊的性质.定理 1:菱形的四条边都相等.这个定理要求学生自已完成证明,可以根据菱形的定义推出,课堂上只需让学生说说理由就可以了,不 必写证明过程.定理 2:菱形的对角线互相垂直,并且每条对角线平分一组对角.分析 : 本题是菱形的性质定理30 , 得出 ABD 为等边三角形 键 .2 的应用,由 BAC=,就抓住了问题解决的关学习资料重点学习资料第 1 页,共 84 页解:四边形ABCD 是菱形四、巩固练习教材 P4 随堂练习 AB =AD ( 菱形的定义AC平 分 BAD(菱 分 一 组 对角 )又 BAC= 30 ,),形的每条对角线平五、课堂小结:本节课应掌握 ( 菱形的性质定理
5、中心对称图形). BAD ABD=60 ,为等边三角形,: 一个定义) ,二个结论( 菱形的定义) ,二条定理( 菱形是轴对称图形,又是 AB =BD =6.又 OB=OD=3 (平行四边形的对角线互相平分),AC BD ( 菱形的对角线互相垂直).由勾股定理得AO2+BO2=AB2,六、布置作业教材 P45 习题 1. 1 AO=3 3AC=2AO=6 3.课 时第2结论 : 菱形判定定理1: 四边都相等的四边形是菱【教学目标】1. 经历菱形的判定定理的发现过程形 . (板书)三、探究新知.2.掌握菱形的判定定理“四边相等的四边形是菱例 1: 已知:如图,在中, BD AC,O 为垂ABCD
6、形” .足 . 求证:四边形ABCD 是菱形 .3.掌握菱形的判定定理“对角线互相垂直的平行四边形是菱形”.4. 通过运用菱形知识解决具体问题,提高分析能力和观察能力, 并根据平行四边形、矩形、菱形的从属关系,向学生渗透几何思想【教学重难点】重点 : 菱形的判定定理.分析 : 在已知是平行四边形的情况下,要证明是菱形,只要证明一组邻边相等.证明:四边形是平行四边形,ABCD难点 : 菱形判定方法的综合应用. 课本“做一做”既 AO =CO( 平行四边形的对角线互相平需要一定的空间想象力,又要有较强的逻辑思维能力【教学过程】 一、复习引入.分 ). BD AC, AD =CD ,四边形ABCD
7、是菱形(菱形的定义教师提问 : 菱形的定义和性质.).定义 : 一组邻边对应相等的平行四边形叫做菱形性质 : 除具备一般平行四边形的性质外,还具备四 条边相等,对角线互相垂直,并且每条对角线平分一组 对角判定一个四边形是不是菱形可根据什么来判定?定义,此外还有两种判定方法,今天我们就要学习 菱形的判定 .( 板书课题 )二、创设情境,引入新课.结论边形是菱形: 菱形判定定理.2: 对角线互相垂直的平行四猜想 : 对角线互相垂直平分的四边形是不是菱形?启发:通过四个直角三角形的全等得到四条边相等结论 : 对角线互相垂直平分的四边形是菱形.例 2: 如图,在矩形中,对角线AC 的垂直平ABCD学生
8、拿出准备好的长方形纸片,按P6“做一做”中分线与是菱形AD , BC 分别交于点E, F,求证:四边形AFCE的图的方法对折两次, 并沿第3 个图中的斜线剪开,展.开剪下的部分,猜想这个图形是哪一种四边形?一定是菱形吗?为什么?剪出的图形四条边都相等,根据这个 条件首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.学习资料重点学习资料第 2 页,共 84 页求证:四边形为菱形.AEFD已知对角线互相垂直,还需什么条件就能启发:说 明四边形是菱形?五、课堂小结本节课应掌握:1. 菱形常用的判定方法归纳为(学生讨论归纳后, 由教师板书):证明 :四边形是矩形,),ABCD AE/ FC(
9、矩形的定义 1= 2.一组邻边相等的平行四边形(1)(2)(3).四条边相等的四边形.又 AOE= COF , AO=CO ,对角线互相垂直的平行四边形.( 4)对角线互相垂直平分的四边形 AOE COF EO =FO ,,2.想一想 : 说明平行四边形、矩形、菱形之间的区别与联系 .四边形是平行四边形(对角线互相平AFCE分的四边形是平行四边形)又 EF AC ,.四边形是菱形(对角线互相垂直的平AFCE行四边形是菱形)四、巩固练习.1.教材 P7 习题 1.22. 教材 P9? 10 习题 1. 31. 教材P7、 P9 随堂练习 .2. 思考题 : 如图,中,A=90 , B 的平分BC
10、 ,H 、F 为垂足 ,ABC线交AC 于AH 、DF都垂直于D,矩形的性质与判定1.2第课 时1【教学目标】【显示投影片】教师活动 : 将收集来的有关长方形图片播放出来,了解矩形的有关概念,理解并掌握矩形的有关1.性质 .让学生进行感性认识,然后定义出矩形的概念.经过探索矩形的概念和性质的过程,发展学生矩形定义 : 有一个角是直角的平行四边形叫做矩形(也就是小学学习过的长方形)教师活动 : 介绍完矩形概念后,为了加深理解,也为2.合情推理意识;掌握几何思维方法【教学重难点】重点 : 掌握矩形的性质,并学会应用.了继续研究矩形的性质,问题:拿出教具 ,同学生一起探究下面.难点 : 理解矩形的特
11、殊性. 把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形 .【教学过程】 一、联系生活,形象感知问题 1:改变平行四边形活动框架,将框架夹角变为 90 ,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)学生活动 : 观察教师的教具,研究其变化情况,可 以学习资料重点学习资料第 3 页,共 84 页发现 : 矩形是平行四边形的特例,属于平行四边形,因此这样可求出OA=AB=2. 5 , AC=BD = 2 OA =5.它具有平行四边形的所有性质【活动方略】教师活动 : 板书例 1,分析例1 的思路,教会学生解.,那么问题 2:既然它具有
12、平行四边形的所有性质矩形是否具有它独特的性质呢?(教师提问) 学生活动 :由平行四边形对边平行以及刚才题分析法,然后板书解题过程( 课本 P13). 变为学生活动 : 参与教师讲例,总结几何分析思路.【问题探究】( 投影显示)90, 可以得到 的补角也是角都是直角 .90从而得到 : 矩形的四个如图, ABC 中, A=2 B,CD 是 ABC 的高, E评析 : 实际上,在小学学生已经学过长方形四个角是 AB 的中点,求证:: D E=1/2 AC.都是 90,这里学生不难理解.教师活动: 用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现: 矩
13、形的两条对角线相等. 口 述证明过程是 : 充分利用( SAS) 三角形全等来证明.分析 : 本题可从E 是 AB的中点切入,考虑应用三角形中位线定理. 应用三角形中位线必需找到另一个中点.G 为分析可知:可以取尝试 .BC 中点F,也可以取AC 的中点口述:四边形是矩形,ABCD ABC = DCB = 90, AB=DC又 BC 为公共边,. ABC DCB( SAS ), AC=BD.教师提问 :AO=AC,BO =BD 呢? BO 是 Rt ABC 的什么线?由此你可以得到什么结论?学 生 活 动 : 观 察 、 思 考 后 发 现,AO=1/2ACBO=1/2 BD , BO是的中线
14、 . 由此归纳直角三角Rt ABC形的一个性质:直角三角形斜边上的中线等于斜边的一半 .直角三角形中,( 师生回忆) .30 角所对的边等于斜边的一半【设计意图】采用观察、操作、交流、演绎的手法来解决重点,突破难点二、范例点击例 1: 如图,在矩形.ABCD 中,两条对角线相交于点O, AOD =120 , AB =2.5, 这个矩形对角线的长影显示).( 投教师活动 : 操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线.分析:利用矩形对角线相等且平分得到OA=OB,由为等边三角形,学生活动:分四人小组,合作探索,想出几种不同的证法 .于 AOB=60 ,因此,可以发现AOB学习资
15、料重点学习资料第 4 页,共 84 页证法一 : 取 BC 的中点 F,连接EF、 DF,如图( 1).【设计意图】 补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路.三、随堂练习教材 P13 随堂练习 四、应用拓展已知 : 如图,从矩形ABCD的顶点C 作对角线BD的垂证线 与 BAD的平分线相交于点E ,求 FAB. 现在只要证明BAF = DAC即可,而实际上,:AC=CE. BAF = BDA= DAC ,问题迎刃而解五、课堂小结本节课应掌握:1. 矩形定义 : 有一个角是直角的平行四边形叫做矩 形,因此矩 形 是平行四边形的特例,具有平行四边形所 有性质。2. 矩
16、形性质归纳:.( 1) 边的性质 : 对边平行且相等( 2) 角的性质:四个角都是直角.( 3) 对角线性质: 对角线互相平分且相等.( 4) 对称性 : 矩形是轴对称图形六、 布置作业教材 P13 习题 1.4 第 1、 2 题.( 1)是不是平行四边形,(2) 再看它有无直角.2. 矩形是特殊的平行四边形,它具有哪些性质?( 通过对矩形定义及性质的回顾,引出判定矩形除了定义第 2【教学目标】1. 通过探索与交流,逐渐得出矩形的判定定理,并会运用定理解决相关问题.2. 通过开放式命题,尝试从不同角度寻求解决问的方法 .【教学重难点】题重点 : 探索矩形判定定理的过程及应用.难点 : 矩形判定
17、定理的应用【教学过程】一、 创设情境,导入新课 通过上节课对矩形的学习,谁能回答以下问题:1. 判定四边形是矩形的方法是什么?(用定义).学习资料重点学习资料第 5 页,共 84 页课 时( 1)条件与结 论 各是什么? (引出条件与结论的关系)( 2)使一个平行四边形是矩形出矩形的定义证明),已学过什么方法?( 引外,还有哪些方法,导入新课二 、探究新知).( 3)要证明一个角是直角,根据平行四边形相邻两角互补,只需证明什么?(引出证明两个三角形全等)个活动一 : 矩形的判定定理一的探索1. 先请同学只用手中量角器量一下图形(甲)( 4)如何选择要证明两个三角形全等,它们的条件是否满足?最后
18、由学生说出整个证明的过程,教师进行适当 评与板书 .当判定定理一、定理二得出后,让学生总结矩形的三(乙)中的四边形的角(有几个直角).的点2. 然后通过同桌同学交流用几个直角才能构成矩形,并说明理由.( 此问题的解决以动手实践,合作交流的形式进行,学生在探究过程中根据已有的知识积累矩形的定种判定方法(定义,定理一与定理二),并对题设进行比较、区分,使学生进一步明确定理应用的条件三、范例点击.义,得出矩形的判定定理一. 教师以合作者的身份深入学生中,了解学生的探究进程并适当给予点拨最后教师进行适当板书进行推证、讲解.)例 : 如图所示,在ABCD 中, E、 F 为BE=CF, AF=DE.求证
19、:BC 上两点,. 在此过程且中,全体同学可互相补充、互相评价,培养学生的语言表ABF DCE ;(1)(2)达能力、推理能力.四边形ABCD是矩形 .活动二 : 教师提问 :矩形的对角线相等,反过来对角线相等的四边形是什么图形?在学生回答是或不是的情况下,让学生依下列步骤进行探索.1. 画任意两条长度相等的相交线段,并把它们的四个顶点顺次连接,看是不是矩形?2.画两条长度相等并且一条平分另一条的线段, 并把它们的四个顶点顺次连接,看是不是矩形?3.画两条长度相等并且互相平分的线段,并把它 们的四个顶点顺次连接,看是不是矩形?4. 然后通过同桌同学交流用怎样的两条长度相等分析:(1 ) 由四边
20、形ABCD是 平 行 四 边 形 , 得AB = CD ,再结合已知条件,利用“SSS”可证得 A B F D C E ;2 ) 只 需 再 证(在 ABF和 DCE中, B 或 C 等于90 即的线段才能构成矩形,并说明理由. AB =DC , BF =CE , AF =DE,可.,师生进行适当交流.、归最后通过教师演示动画讲解,得出矩形的判定定理二纳、 ABF DCE ,证明:(1) BE=CF , ABF DCE ,B= C. B F = B E + E F , C E =C F +EF , B F = C E . 四 边 形(2)( 此问题的解决仍以分组合作交流的形式进行,通过此种互动
21、过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦.)ABCD 是平行四边形,A四边形B=DC.活动三 : 矩形的判定定理二的证明.ABCD 是平行四边形,已知 : 在平行四边形求证 : 平行四边形中, AC=BD,ABCD AB / CD, B+ C=180 ,ABCD 是矩形 . B = 90 ,平行四边形是矩形 .ABCD四、拓展应用为了帮助学生巩固定理,应用如下:应用一 : 工人师傅要检验两组对边相等的四边形是否成矩形,你有没有方法帮助工人师傅解决这个问题?对于判定定理二的证明教师从以下几个方面进行与学生交流 .(这一题是由引入判定定理二改编而成的,主要考查学生学习资料重点学
22、习资料第 6 页,共 84 页利用矩形的判定定理解决实际问题的能力应用二 : 例题讲解. )一张四边形纸板ABCD 形状如图,它的对角线互相垂直 . 若要从这张纸板中剪出一个矩形,并且使它的四个顶点分别落在四边形的四条边上 ,可以怎样剪?ABCD对于这个问题的解决教师引导学生回顾过去证明依次连接四边形各边中点所得的四边形是平行四边形的经验,使学生联想到连接四边形的两条对角线,然后.ABCD运用中位线定理,这样就解决了这个问题学习资料重点学习资料第 7 页,共 84 页需的条件,辨析判定定理的题设,以便更好地应用定理.五、巩固练习练习 一:1. 内角都相等的四边形是矩形2. 对角线相等的四边形是
23、矩形这两个问题的解决分别应用所学定理,使学生能够学以致用 . 这两道题的解决方法是先采用独立完成形式,有困难(. ( )().的学生可以求助老师或同学,板书讲解 .)学生互助完成,派学生代表3. 对角线互相平分且相等的四边形是矩形4. 一组邻角相等的平行四边形是矩形).六、课堂小结本节课应掌握: 矩形常用的判定方法归纳为(学生讨论归纳后,由教师板书):5. 对角互补的平行四边形是矩形练习二 :如图 ,AC,BD 是矩形.ABCD的两条对角线,. 求证 : 四边形是矩形 .AE=CG=BF=DHEFGH( 1) 有一个角是直角的平行四边形叫做矩形.(2) 对角线相等的平行四边形是矩形( 3) 有
24、三个角是直角的四边形是矩形.七、布置作业教材 P16 习题 1.5 第 1、 2 题(练习一, 二是课内练习,主要为加强学生对所学定理的理解和掌握, 使学生能将给出的条件转化为应用定理所正方形的性质与判定1.3第课 时1【教学目标】了解正方形的有关概念,理解并掌握正方形的性定理 .【教学重难点】过);正方形四个角都是直角(小学学过).质实验活动:教师拿出矩形按左图折叠. 然后展开,让学生发现: 只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生重点 : 探索正方形的性质定理发现:只要菱形有一个内角为是 正方形 .90,这样的特殊菱形也.难点 : 掌握正方形的性
25、质的应用方法,把握正方形既是矩形又是菱形这一特性来学习本节课内容【教学过程】 一、探究导入【显示投影片】显示内容: 展示生活中有关正方形的图片,幻灯片( 多幅 ).【活动方略】教师活动 : 操作投影仪,边展示图片,边提出下面的问题 :1. 同学们观察显示的图片后,有什么联想?正方形 四条边有什么关系?四个角呢?2.正方形是矩形吗?是菱形吗?为什么?3.正方形具有哪些性质呢?学生活动: 观察屏幕上所展示的生活中的正方形图.教师活动 : 组织学生联想正方形还具有哪些性质, 板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质; 它又是菱形 ,所以它又具有菱形的一切性质
26、, 归纳如下:片 . 进行联想 . 易知:1. 正方形四条边都相等(小学已学学习资料重点学习资料第 8 页,共 84 页正方形定义: 有一组邻边相等,并且有一个角是直角角形 .的平行四边形叫做正方形正方形性质:( 1) 边的性质 : 对边平行,四条边都相等.( 2) 角的性质:四个角都是直角.( 3) 对角线的性质: 两条对角线互相垂直平分且相等,每条对角线平分一组对角.分析:本题要证EFC=90 ,从已知条件分析可以(4) 对称性 : 是轴对称图形,有四条对称轴.得到只要利用勾股定理逆定理,就可以解决问题. 这 里应【设计意图】采用合作交流、发现、归纳的方式来用到正方形性质解决重点问题,突破
27、难点二、探究新知.【活动方略】教师活动 : 用投影仪显示演练题【课堂演练】( 投影显示)2, 组织学生应用正演练题角线 AC 与1:如图,已知四边形ABCD 是正方形,对MN / AB,且分别与方形和勾股定理逆定理分析,并请同学上讲台分析思路,板演 .学生活动 : 先独立分析 ,找到证明思路是利用勾股定B D相 交 于0 ,OA、 OB 相交于 M 、 N .求证:( 1) BM =CN;BM CN .(2)理的逆定理解决问题.证明 :设= 4a,在正方形中,DC=BC =4a,ABABCD=3a .= 2 a,AE =a, DEAF=FB B= A=D =90 ,由勾股定理得:2222222
28、2+ CF = (AE + AF) + (CB + BF)=(a+ 4 a ) +EF222(16 a +4a )=25 a ,2222CE =CD +DE = (4 a)+ (3分析 :本题是证明BM=CN ,根据正方形性质,可以22a) =25 a ,证明 BM 、 CN 所在 BOM 与 CON 是否全等 . ( 2) 在222+=.EFCFCE( 1) 的基础上完成,欲证90就可以了 .【活动方略】 教师活动 : 操作投影仪BM CN. 只需证 5+ CMG =由勾股定理的逆定理可知 CEF 是直角三角形.【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力三、范例点击.
29、 组织学生演练,巡视,关注“学困生 ”;等待大部分学生练习做完之后,再请两位学例:已知:如图,四边形是正方形 ,矩形ABCDPECF生上台演示,交流.的顶点在正方形的对角线BD 上 ,E在BC 上 ,FPABCD学生活动:课堂演练,相互讨论,解决演练题的问在 CD 上,连接AC、AP、PC、EF,若 EC=4,CF =3, 求 PA的长 .题 .证明 : ( 1)四边形是正方形,ABCDCOB = BOM=90, OC =OB .MN / AB,1=2, ABO3,=又 1= ABO= 45, 2= 3, OM=ON, CON BOM, BM = CN .分析 :本题运用矩形对角线相等的性质可
30、得EF =PC,(2) 由( 1) 知 BOM CON,运用正方形的性质可得AP=PC ,进而可得AP=EF. 因此, 4= 5, 4+BMO=90, 5+ BMC =90只要求出EF 的值即可. , CGM=90 , BM CN.PECF 是矩形 , PC=EF. 在 Rt EFC解 : 四边形演练题2: 如图 ,正方形中,点在 AD 边上,ABCDE中,EC= 414,且,F 为的中点,求证: CEF 是直角三CF= 3,AE=ADAB学习资料重点学习资料第 9 页,共 84 页EF=PC=5.ABCD 四边形是正方形, BD AC 且 BD 平. 点 P 在 BD 上, 分 AC, 即
31、BD 是 AC 的垂直平分线PA=PC=5.【方法归纳】与矩形对角线有关的计算问题,主要运用矩形的对角线相等和正方形的对角线的性质,借助第三条线段作“媒介”求线段的长四、 巩固练习教材 P21 随堂练习 五、 课堂小结.本节课应掌握:1.正方形的概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质(1)正方形的四个角都是直角,四条边相等.(2)正方形的对角线相等且互相垂直平分.(3)正方形既是轴对称图形,也是中心对称图形布置作业.六、1、2、3 题1. 7教材习题第P22学习资料重点学习资料第 10 页,共 84 页第课 时2二、探究新知1. 探索正方形的判定条件:
32、 学生活动: 四人一组进行讨论研究,【教学目标】1. 知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.老师巡回其间,2. 经历探究正方形判定条件的过程,发展学生初步的进行引导、质疑、解惑,通过分析与讨论,师生共同总结综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法 .出判 定 一个四边形是正方形的基本方法.( 1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且3. 理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点【教学重难点】.有一组邻边相等形;,那么就可以判定这个平行四边形是正方重点
33、: 掌握正方形的判定条件.( 2)先判定一个四边形是矩形形,那么这个四边形是正方形;,再判定这个矩形是菱难点 : 合理恰当地利用特殊平行四边形的判定进行有关的论证和计算【教学过程】、创设情境,引入新课 我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.( 3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理. 矩形和菱形的判定定理是判定正方形的基础. 这三个方法还可.写成 : 有一个角是直角,且有一组邻边相等的四边形是正方形; 有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三
34、种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用通过填写让学生形象地看到正方形是特殊的矩形,也时要仔细辨别后才可以作出判断2. 正方形判定条件的应用例 1: 判断下列命题是真命题还是假命题?并说明理由 .( 1)四条边相等且四个角也相等的四边形是正方形;四个角相等且对角线互相垂直的四边形是正方形;( 3)对角线互相垂直平分的四边形是正方形;( 4) 对角线互相垂直且相等的四边形是正方形;(5) 对角线互相垂直平分且相等的四边形是正方形 师生共析:(1)是真
35、命题 ,因为四条边相等的四边形是菱形.是特殊的菱形 ,还是特殊的平行四边形;而正方形 、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1. 怎样判断一个四边形是平行四边形?2. 怎样判断一个四边形是矩形?3. 怎样判断一个四边形是菱形?4. 怎样判断一个平行四边形是矩形、菱形? 议一议 : 你有什么方法判定一个四边形是正方形?., 又四个角相等,根据四边形内角和定理知每个角为所以由有一个角是直角的菱形是正方形可以判定此命题 是真命题 .90,真命题 , 由四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可判定这个矩形是菱形,所以根据 是既是矩形又是菱形的四边形是正方形,可判定
36、其为真(3) 假命题,对角线平分的四边形是平行四边形,.学习资料重点学习资料第 11 页,共 84 页GAB +BAE即 GAE=45 ,=45 ,对角线垂直的四边形是菱形,所以它不一定是正方形. 如ABCD下图 ,满足不是正方形 .AO=CO,BO=DOACBD且但四边形( 4)假命题,它可能是任意四边形. 如上图,ACBD 且AC=BD,但四边形不是正方形 .ABCD( 5)真命题 .方法一 : 对角线互相平分的四边形是平行四边形, 对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形. 可判定其为真 .方法三: 由对角线互相垂直平分可知是菱形,由
37、对角线平分且相等可知是矩形是正方形 .,而既是菱形又是矩形的四边形就总结 : 通过辨析 ,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依 据,以便灵活应用.例 2: 如图, E、 F 分别在正方形ABCD 的边 BC、 CD上,且 AFE = 45 ,试说明EF=BE+DF.师生共析 : 要证 EF=BE+DF,如果能将DF移到 EB延长线或将 BE移到 FD延长线上 ,然后就能证明两线段长度相等。此时可依靠全等三角形来解决.像这种在EB上补上 DF或在 FD上补上 BE的方法叫做补短法 .解 : 将 ADF旋转到 ABC,则 ADF ABG AF =AG ,
38、 ADF =ABG , DF EAF = 45 且四边形是正方形 ADF +BAE =45 ,=BG ,学习资料重点学习资料第 12 页,共 84 页 AEF AEG ( SAS) , EF =EG =EB +BG =EB +DF .讨论 : 你能从一张彩色纸中剪出一个正方形吗 你的做法 .你怎么检验它是一个正方形呢?小组讨论一下三、范例点击? 说出.例 3: 如图,在ABCD中,对角线交于点AC、 BDO, E 是 BD 延长线上的点,且ACE 是等边三角形.(1)求证:四边形(2)若 AED = 2正方形 .分析 : 由已知可得是菱形;ABCDEAD,求证:四边形ABCD 是BE 垂直平分
39、进而可得AC,AB=BC,再用菱形定义可判定.( 2) 由菱形性质可得DAC= BAC,由已知得 AED =30, EAO=60, DAE = 15,DAO =45,从而得出 BAD =90,问题得解.证明:(1)OA=OC . 四边 形ABCD为平行四边形,又 ACE 是等边三角形,EOAC,即BD AC,AB =BC, 平行四边形ABCD 是菱形 .(2) ACE 为等边三角形, AEOOEC =30,= EAC =60.AED=2EAD , EAD =15, DAO = 45 . 又 四边形是菱形,ABCD DAO = BAO=45 , DAB = 90 , 菱形为正方形 .ABCD四、
40、 巩固练习教材 P24 随堂练习 通过练习进一步巩固正方形的判定方法的应用五、 课堂小结本节课应掌握:.正方形常用的判定方法归纳为教师板书)(学生讨论归纳后, 由(1)对角线相等的菱形是正方形(2)对角线垂直的矩形是正方形.(3)有一个角是直角的菱形是正方形(4)有一组邻边相等的矩形是正方形 六、 布置作业.教材 P25 习题1.8 第 1、 3 题 .学习资料重点学习资料第 13 页,共 84 页第二章一元二次方程认识一元二次方程第 1 课时2.1如果假设AB=1, AC=x, 那么 BC=,根据题意 , 得 : .【教学目标】了解一元二次方程的概念;一般式+bx+c=O(aa整理得 : .0) 及其派生的概念;应用一元二次方程概念解决一些简单题目 .1.通过设置问题