《初三数学几何知识点归纳.doc》由会员分享,可在线阅读,更多相关《初三数学几何知识点归纳.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版初三数学几何知识点归纳1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点, 有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理 三角形两
2、边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论 1直角三角形的两个锐角互余19推论 2三角形的一个外角等于和它不相邻的两个内角的和20 推论 3三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1在角的平
3、分线上的点到这个角的两边的距离相等28 定理 2到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论 1等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论 3等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等( 等角对等边 )35推论 1三个角都相等的三角形是等边三角形36 推论 2有一个角等于 60 的等腰三角形是等边三角形37 在
4、直角三角形中,如果一个锐角等于30 那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1关于某条直线对称的两个图形是全等形43 定理 2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3两个图形关于某直线对称, 如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分, 那么这两个图形关于这条
5、直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c的平方,即 a+b=c47 勾股定理的逆定理如果三角形的三边长a、b、c 有关系 a+b=c, 那么这个三角形是直角三角形初中几何公式:四边形48 定理 四边形的内角和等于36049 四边形的外角和等于36050 多边形内角和定理n边形的内角的和等于 (n-2)18051 推论 任意多边的外角和等于36052 平行四边形性质定理1平行四边形的对角相等53 平行四边形性质定理2平行四边形的对边相等54 推论 夹在两条平行线间的平行线段相等55 平行四边形性质定理3平行四边形的对角线互相平分56 平行四边形判定定理1两组对角分别相
6、等的四边形是平行四边形57 平行四边形判定定理2两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3对角线互相平分的四边形是平行四边形59 平行四边形判定定理4一组对边平行相等的四边形是平行四边形60 矩形性质定理1矩形的四个角都是直角61 矩形性质定理2矩形的对角线相等62 矩形判定定理1有三个角是直角的四边形是矩形63 矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形64 菱形性质定理1菱形的四条边都相等65 菱形性质定理2菱形的对角线互相垂直, 并且每一条对角线平分一组对角66 菱形面积 =对角线乘积的一半,即S=(ab)267 菱形判定定理1四边都相等的四边形是菱
7、形68 菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式:正方形69 正方形性质定理1正方形的四个角都是直角, 四条边都相等70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1关于中心对称的两个图形是全等的72 定理 2关于中心对称的两个图形, 对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形
8、是等腰梯形77 对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论 1经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83 (1)比例的基本性质如果 a:b=c:d,那么 ad=bc如果 ad=bc, 那么 a:b=c:d84 (2)合比性质如果 a/b=c/d,那么(ab)
9、/b=(cd)/d85 (3)等比性质如果 a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形一边的直线截其他两边( 或两边的延长线) ,所得的对应线段成比例88 定理 如果一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边, 并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边( 或两边的延长线) 相交,所构成的三角形与原三角形相似91
10、 相似三角形判定定理1两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2相似三角形周长的比等于相似比98 性质定理 3相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦
11、值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理 不在同一直线上
12、的三个点确定一条直线110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1平分弦 ( 不是直径 ) 的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论 2圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理 一条弧所对的圆周角等于它所
13、对的圆心角的一半117 推论 1同弧或等弧所对的圆周角相等; 同圆或等圆中, 相等的圆周角所对的弧也相等118 推论 2半圆( 或直径) 所对的圆周角是直角 ;90 的圆周角所对的弦是直径119 推论 3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 直线 L 和 O相交 d r直线 L 和 O相切 d=r直线 L 和 O相离 d r122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论 1经过圆心且垂直于切线的直线必经过
14、切点125 推论 2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论 从圆外一点引圆的两条割线,这一点到每条割
15、线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135 两圆外离 d R+r两圆外切 d=R+r两圆相交 R-rd R+r(R r)两圆内切 d=R-r(R r)两圆内含 dR-r(R r)136 定理 相交两圆的连心线垂直平分两圆的公共弦137 定理 把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正n 边形是这个圆的外切正n 边形138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正 n 边形的每个内角都等于 (n-2)180/n140 定理 正 n 边形的半径和边心距把正n 边形分成 2n 个全等的直角三角形141 正 n 边形的面积 Sn=pnrn/2 p表示正 n 边形的周长142 正三角形面积 3a/4 a表示边长143 如果在一个顶点周围有k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180/n=360化为(n-2)(k-2)=4144 弧长计算公式: L=nR/180145 扇形面积公式: S 扇形=nR/360=LR/2146 内公切线长 = d-(R-r)外公切线长 = d-(R+r)