《中考数学专题复习—隐圆问题精讲.docx》由会员分享,可在线阅读,更多相关《中考数学专题复习—隐圆问题精讲.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考数学压轴题隐圆问题 1、 如图,正方形ABCD中,E为AB中点,FEAB,AF=2AE,FC交BD于O,则DOC的度数为2、 如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上O是EG的中点,EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH以下四个结论:GHBE;EHMGHF;1;2,其中正确的结论是3、如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF分别交BD,DE于点M,N,且AFDE,连接PN,则以下结论中:SABM4SFDM;PN;tanEAF;PMNDPE,正确的是4
2、、如图,在等腰直角ABC中,ACB=90,COAB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:DOE是等腰直角三角形;CDE=COE;若AC=1,则四边形CEOD的面积为;AD2+BE22OP2=2DPPE,其中所有正确结论的序号是5、如图,在菱形中,点E,F分别在,上,且,与相交于点G,与相交于点H下列结论:;若,则;其中正确的结论有_(只填序号即可)6、如图,在正方形中,点O是对角线的中点,点P在线段上,连接并延长交于点E,过点P作交于点F,连接、,交于G,现有以下结论:;为定值;以上结论正确的有_(填入正确的序号即可)7、如图,点P是正方形AB
3、CD的对角线BD延长线上的一点,连接PA,过点P作PEPA交BC的延长线于点E,过点E作EFBP于点F,则下列结论中:PAPE;CEPD;BFPDBD;SPEFSADP,正确的是_(填写所有正确结论的序号)8、如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴交于点A.B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD.BC.(1)求点A.B.D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D.O、C.B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.9、如图,已知二次函数y=ax2+1(a0,a为实数)的图象过
4、点A(2,2),一次函数y=kx+b(k0,k,b为实数)的图象l经过点B(0,2)(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由10、如图1,已知二次函数y=ax2+x+c(a0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,
5、请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求此时点N的坐标11、如图,抛物线y=ax2+bx+c(a0)与x轴交于点A(4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,P与直线BC相切于点Q,与直线DE相切于点R求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,MN为顶点的四边形是平行四边形?若存在,则
6、直接写出N点坐标;若不存在,请说明理由参考答案:1、【解析】试题解析:如图,连接DF、BFFEAB,AE=EB,FA=FB,AF=2AE,AF=AB=FB,AFB是等边三角形,AF=AD=AB,点A是DBF的外接圆的圆心,FDB=FAB=30,四边形ABCD是正方形,AD=BC,DAB=ABC=90,ADB=DBC=45,FAD=FBC,FADFBC,ADF=FCB=15,DOC=OBC+OCB=60故选A考点:正方形的性质2、【详解】解:如图,四边形ABCD和四边形CGFE是正方形,BCCD,CECG,BCEDCG,在BCE和DCG中,BCEDCG(SAS),BECBGH,BGH+CDG90
7、,CDGHDE,BEC+HDE90,GHBE故正确;EHG是直角三角形,O为EG的中点,OHOGOE,点H在正方形CGFE的外接圆上,EFFG,FHGEHFEGF45,HEGHFG,EHMGHF,故正确;BGHEGH,BHEH,又O是EG的中点,HOBG,DHNDGC,设EC和OH相交于点N设HNa,则BC2a,设正方形ECGF的边长是2b,则NCb,CD2a,即a2+2abb20,解得:ab(1+)b,或a(1)b(舍去),故正确;BGHEGH,EGBG,HO是EBG的中位线,HOBG,HOEG,设正方形ECGF的边长是2b,EG2b,HOb,OHBG,CGEF,OHEF,MHOMFE,EM
8、OM,EOGO,SHOESHOG,故错误,故选A3、【解答】解:正方形ABCD的边长为2,点E是BC的中点,ABBCCDAD2,ABCCADF90,CEBE1,AFDE,DAF+ADNADN+CDE90,DANEDC,在ADF与DCE中,ADFDCE(ASA),DFCE1,ABDF,ABMFDM,()24,SABM4SFDM;故正确;由勾股定理可知:AFDEAE,ADDFAFDN,DN,EN,AN,tanEAF,故正确,作PHAN于HBEAD,2,PA,PHEN,AH,HN,PN,故正确,PNDN,DPNPDE,PMN与DPE不相似,故错误故选:A4、【考点】勾股定理;四点共圆【分析】正确由A
9、DOCEO,推出DO=OE,AOD=COE,由此即可判断正确由D、C、E、O四点共圆,即可证明正确由SABC=11=,S四边形DCEO=SDOC+SCEO=SCDO+SADO=SAOC=SABC即可解决问题正确由D、C、E、O四点共圆,得OPPC=DPPE,所以2OP2+2DPPE=2OP2+2OPPC=2OP(OP+PC)=2OPOC,由OPEOEC,得到=,即可得到2OP2+2DPPE=2OE2=DE2=CD2+CE2,由此即可证明【解答】解:正确如图,ACB=90,AC=BC,COABAO=OB=OC,A=B=ACO=BCO=45,在ADO和CEO中,ADOCEO,DO=OE,AOD=C
10、OE,AOC=DOE=90,DOE是等腰直角三角形故正确正确DCE+DOE=180,D、C、E、O四点共圆,CDE=COE,故正确正确AC=BC=1,SABC=11=,S四边形DCEO=SDOC+SCEO=SCDO+SADO=SAOC=SABC=,故正确正确D、C、E、O四点共圆,OPPC=DPPE,2OP2+2DPPE=2OP2+2OPPC=2OP(OP+PC)=2OPOC,OEP=DCO=OCE=45,POE=COE,OPEOEC,=,OPOC=OE2,2OP2+2DPPE=2OE2=DE2=CD2+CE2,CD=BE,CE=AD,AD2+BE2=2OP2+2DPPE,AD2+BE22OP
11、2=2DPPE故正确5、【答案】【分析】根据等边三角形的性质证明ACFCDE,可判断;过点F作FPAD,交CE于P点,利用平行线分线段成比例可判断;过点B作BMAG于M,BNGC于N,得到点A、B、C、G四点共圆,从而证明ABMCBN,得到S四边形ABCG=S四边形BMGN,再利用S四边形BMGN=2SBMG求出结果即可判断;证明BCHBGC,得到,推出GHBG=BG2-BC2,得出若等式成立,则BCG=90,根据题意此条件未必成立可判断【详解】解:ABCD为菱形,AD=CD,AE=DF,DE=CF,ADC=60,ACD为等边三角形,D=ACD=60,AC=CD,ACFCDE(SAS),故正确
12、;过点F作FPAD,交CE于P点 DF=2CF,FP:DE=CF:CD=1:3,DE=CF,AD=CD,AE=2DE,FP:AE=1:6=FG:AG,AG=6FG,CE=AF=7GF,故正确;过点B作BMAG于M,BNGC于N,AGE=ACG+CAF=ACG+GCF=60=ABC,即AGC+ABC=180,点A、B、C、G四点共圆,AGB=ACB=60,CGB=CAB=60,AGB=CGB=60,BM=BN,又AB=BC,ABMCBN(HL),S四边形ABCG=S四边形BMGN,BGM=60,GM=BG,BM=BG,S四边形BMGN=2SBMG=2BGBG=BG2,故正确;CGB=ACB=60
13、,CBG=HBC,BCHBGC,则BGBH=BC2,则BG(BG-GH)=BC2,则BG2-BGGH= BC2,则GHBG=BG2-BC2,当BCG=90时,BG2-BC2=CG2,此时GHBG= CG2,而题中BCG未必等于90,故不成立,故正确的结论有,故答案为:6、【答案】【分析】由题意易得APF=ABC=ADE=C=90,AD=AB,ABD=45,对于:易知点A、B、F、P四点共圆,然后可得AFP=ABD=45,则问题可判定;对于:把AED绕点A顺时针旋转90得到ABH,则有DE=BH,DAE=BAH,然后易得AEFAHF,则有HF=EF,则可判定;对于:连接AC,在BP上截取BM=D
14、P,连接AM,易得OB=OD,OP=OM,然后易证AOPABF,进而问题可求解;对于:过点A作ANEF于点N,则由题意可得AN=AB,若AEF的面积为定值,则EF为定值,进而问题可求解;对于由可得,进而可得APGAFE,然后可得相似比为,最后根据相似三角形的面积比与相似比的关系可求解【详解】解:四边形是正方形,APF=ABC=ADE=C=90,AD=AB,ABD=45,由四边形内角和可得,点A、B、F、P四点共圆,AFP=ABD=45,APF是等腰直角三角形,故正确;把AED绕点A顺时针旋转90得到ABH,如图所示:DE=BH,DAE=BAH,HAE=90,AH=AE,AF=AF,AEFAHF
15、(SAS),HF=EF,故正确;连接AC,在BP上截取BM=DP,连接AM,如图所示:对角线的中点,OB=OD,OP=OM,AOB是等腰直角三角形,由可得点A、B、F、P四点共圆,AOPABF,故正确;过点A作ANEF于点N,如图所示:由可得AFB=AFN,ABF=ANF=90,AF=AF,ABFANF(AAS),AN=AB,若AEF的面积为定值,则EF为定值,点P在线段上,的长不可能为定值,故错误;由可得,AFB=AFN=APG,FAE=PAG,APGAFE,故正确;综上所述:以上结论正确的有;故答案为7、【详解】解法一:如图1,在EF上取一点G,使FGFP,连接BG、PG,EFBP,BFE
16、90,四边形ABCD是正方形,FBCABD45,BFEF,在BFG和EFP中, ,BFGEFP(SAS),BGPE,PEFGBF,ABDFPG45,ABPG,APPE,APEAPF+FPEFPE+PEF90,APFPEFGBF,APBG,四边形ABGP是平行四边形,APBG,APPE;解法二:如图2,连接AE,ABCAPE90,A、B、E、P四点共圆,EAPPBC45,APPE,APE90,APE是等腰直角三角形,APPE,故正确;如图3,连接CG,由知:PGAB,PGAB,ABCD,ABCD,PGCD,PGCD,四边形DCGP是平行四边形,CGPD,CGPD,PDEF,CGEF,即CGE90
17、,CEG45,;故正确;如图4,连接AC交BD于O,由知:CGFGFD90,四边形ABCD是正方形,ACBD,COF90,四边形OCGF是矩形,CGOFPD,故正确;如图4中,在AOP和PFE中, ,AOPPFE(AAS),故不正确;本题结论正确的有:,故答案为8、【详解】(1)y=(x-a)(x-3)(0a3)与x轴交于点A.B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即 ,解得:a= 3(
18、舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD,取BD中点M,D.B.O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a2=5或a2=9,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D.O、C.B四点共圆.9、【解答】解:(1)二次函数y=ax2+1(a0,a为实数)的图象过点A(2,2),2=4a+1,解得:a=,二次函数表达式为y=x2+1(2)一次函数y=kx+b(k0,k,b为实数)的图象l经过点B(0,2),
19、2=k0+b,b=2(3)证明:过点M作MEy轴于点E,如图1所示设点M的坐标为(x,x2+1),则MC=x2+1,ME=|x|,EB=|x2+12|=|x21|,MB=,=,=,=,=x2+1MB=MC(4)相切,理由如下:过点N作NDx轴于D,取MN的中点为P,过点P作PFx轴于点F,过点N作NHMC于点H,交PF于点Q,如图2所示由(3)知NB=ND,MN=NB+MB=ND+MC点P为MN的中点,PQMH,PQ=MHNDHC,NHDC,且四个角均为直角,四边形NDCH为矩形,QF=ND,PF=PQ+QF=MH+ND=(ND+MH+HC)=(ND+MC)=MN以MN为直径的圆与x轴相切10
20、、【解答】解:(1)二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),解得抛物线表达式:y=x2+x+4;(2)ABC是直角三角形令y=0,则x2+x+4=0,解得x1=8,x2=2,点B的坐标为(2,0),由已知可得,在RtABO中AB2=BO2+AO2=22+42=20,在RtAOC中AC2=AO2+CO2=42+82=80,又BC=OB+OC=2+8=10,在ABC中AB2+AC2=20+80=102=BC2ABC是直角三角形(3)A(0,4),C(8,0),AC=4,以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8,0),
21、以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(84,0)或(8+4,0)作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(8,0)、(84,0)、(3,0)、(8+4,0)(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MDx轴于点D,MDOA,BMDBAO,=,MNAC=,=,OA=4,BC=10,BN=n+2MD=(n+2),SAMN=SABNSBMN=BNOABNMD=(n+2)4(n+2)2=(n3)2+5,当n=3时,AMN面积最大是5,N点坐标为(3,0)当
22、AMN面积最大时,N点坐标为(3,0)11、【解答】解:(1)抛物线过点A(4,0),B(2,0)设抛物线表达式为:y=a(x+4)(x2)把C(0,4)带入得4=a(0+4)(02)a=抛物线表达式为:y=(x+4)(x2)=x2x+4(2)由(1)抛物线对称轴为直线x=1线段BC的中垂线与对称轴l交于点D点D在对称轴上设点D坐标为(1,m)过点C做CGl于G,连DC,DBDC=DB在RtDCG和RtDBH中DC2=12+(4m)2,DB2=m2+(2+1)212+(4m)2=m2+(2+1)2解得:m=1点D坐标为(1,1)(3)点B坐标为(2,0),C点坐标为(0,4)BC=EF为BC中
23、垂线BE=在RtBEF和RtBOC中,cosCBF=BF=5,EF=,OF=3设P的半径为r,P与直线BC和EF都相切如图:当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1P1Q1E=P1R1E=R1EQ1=90四边形P1Q1ER1是正方形ER1=P1Q1=r1在RtBEF和RtFR1P1中tan1=r1=sin1=FP1=,OP1=点P1坐标为(,0)同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7P2坐标为(7,0)点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,若DN和MP为平行四边形对边,则有DN=MP当x=时,y=DN=MP=点N坐标为(1,)若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为则M纵坐标为由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(1,)当点N在x轴下方时,点N坐标为(1,)当点P坐标为(7,0)时,所求N点不存在故答案为:(1,)、(1,)、(1,)学科网(北京)股份有限公司