《采油工程课程设计.doc》由会员分享,可在线阅读,更多相关《采油工程课程设计.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流采油工程课程设计.精品文档.采油工程课程设计课程设计姓名:孔令伟 学号:201301509287中国石油大学(北京)石油工程学院2014年10月30日一、给定设计基础数据:1二、设计计算步骤22.1 油井流入动态计算22.2 井筒多相流的计算32.3悬点载荷和抽油杆柱设计计算112.4 抽油机校核152.5 泵效计算152.6举升效率计算18三、设计计算总结果19四、课程设计总结20一、给定设计基础数据: 井深:2000+8710=2870m 套管内径:0.124m 油层静压:2870/1001.2 =34.44MPa 油层温度:90 恒温层
2、温度:16 地面脱气油粘度:30mPa.s 油相对密度:0.84 气相对密度:0.76 水相对密度:1.0 油饱和压力:10MPa 含水率:0.4 套压:0.5MPa 油压:1 MPa 生产气油比:50m3/m3 原产液量(测试点):30t/d 原井底流压(测试点):16.35Mpa 抽油机型号:CYJ10353HB 电机额定功率:37kw 配产量:50t/d 泵径:56mm 冲程:3m 冲次:6rpm 柱塞与衬套径向间隙:0.3mm 沉没压力:3MPa 二、设计计算步骤2.1 油井流入动态计算油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。从单井来讲,IPR 曲线
3、表示了油层工作特性。因而,它既是确定油井合理工作方式的依据,也是分析油井动态的基础。本次设计油井流入动态计算采用Petro bras方法Petro bras方法计算综合IPR 曲线的实质是按含水率取纯油IPR曲线和水IPR曲线的加权平均值。当已知测试点计算采液指数时,是按产量加权平均;预测产量时,按流压加权平均。(1) 采液指数计算已知一个测试点:、和饱和压力及油藏压力。因为,=30/(34.44-12)= 1.3/( d.Mpa)(2) 某一产量下的流压Pwf =j()=1.4 x(34.44-10)=34.22t/d=+=34.44+1.4*10/1.8=42.22t/d-油IPR曲线的最
4、大产油量。当0q时,令q=10 t/d,则p=15.754 Mpa同理,q=20 t/d,P=13.877 Mpa q=30 t/d,P=12.0 Mpa当qq时,令q=50 t/d,则按流压加权平均进行推导得:P=f+0.125(1-f)P-1+=8.166Mpa 同理q=60t/d,P=5.860 Mpa当qq时,令q=71t/d,P=2.233 Mpa综上,井底流压与产量的关系列表如下:Pwf/Mpa15.74713.87312.010.08.1665.8602.233Q/(t/d)10203040.653506071 得到油井的流入动态曲线如下图:图1 油井IPR曲线2.2 井筒多相流
5、的计算井筒多相流压力梯度方程井筒多相管流的压力梯度包括:因举高液体而克服重力所需的压力势能、流体因加速而增加的动能和流体沿管路的摩阻损失,其数学表达式如下:gsin+v/d*式中为多相混合物的密度;v为多相混合物的流速;f为多相混合物流动时的摩擦阻力系数;d为管径;p为压力;h为深度;g为重力加速度; 为井斜角的余角。井筒多相管流计算包括两部分:(1)由井底向上计算至泵入口处;(2)油管内由井口向下计算至泵出口处。1)由井底向上计算至泵入口处,计算下泵深度Lp。采用深度增量迭代方法,首先估算迭代深度。在本设计中为了减小工作量,采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物
6、性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出深度增量和下泵深度Lp。按深度增量迭代的步骤:井底流压12Mpa,假设压力降为0.2 Mpa;估计一个对应的深度增量=40m,即深度为1960m 。由井温关系式可以计算得到该处的井温为:89.96。平均的压力和温度:=(90+89.96)/2=89.98。平均压力=11.9 Mpa。由平均压力和平均温度计算的得到流体的物性参数为:溶解油气比R=71.31 ; 原油体积系数B=1.25 原油密度P=739.00; 油水混合液的密度P =843.40; 死油粘度=6.537*10; 活油粘度=3.318*10; 水的粘
7、度=3.263*10; 液体的粘度= 3.296*10;天然气的压缩因子Z=0.9567; 天然气的密度90.70。以上单位均是标准单位。由以上的流体物性参数判断流型:不同流动型态下的和的计算方法不同,为此,计算中首先要判断流动形态。该方法的四种流动型态的划分界限如表1所示。表1 流型界限流动型态界 限泡 流段 塞 流过 渡 流雾 流其中=1.071-0.7277且0.13(如果0.13,则取=0.13); =50+36 ; =75+84 ()。由计算得到,由于该段的压力大于饱和压力的值,所以该段的流型为纯液流。计算该段的压力梯度。由压力梯度的计算公式: =843.40;=计算对应于的该段管长
8、(深度差)。 将第步计算得的与第步估计的进行比较,两者之差超过允许范围,则以新的作为估算值,重复的计算,使计算的与估计的之差在允许范围内为止。该过程之中只迭代一次。2)由井口向下计算至泵出口处,计算泵排出口压力PZ。采用压力增量迭代方法,首先估算迭代压力。同样为了减小工作量,也采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出压力增量和泵排出口压力PZ。按压力增量迭代的步骤已知任一点(井底或井口)的压力, 选取合适的深度间隔(可将管等分为n段)。估计一个对应于计算间隔的压力增量。计算该段的和 ,以
9、及、下的流体性质参数。计算该段压力梯度计算对应于的压力增量比较压力增量的估计量与计算值 ,若二者之差不在允许范围内,则以计算值作为新的估计值,重复第步,使两者之差在允许范围之内为止。计算该段下端对应的深度和压力 以处的压力为起点压力重复第步,计算下一段的深度和压力 ,直到各段累加深度等于或大于管长时为止。2.2计算气-液两相垂直管流的Orkiszewski方法本设计井筒多相流计算采用Orkiszewski方法。Orkiszewski法提出的四种流动型态是泡流、段塞流、过渡流及环雾流。如图1所示。在处理过渡性流型时,采用内插法。在计算段塞流压力梯度时要考虑气相与液体的分布关系。针对每种流动型态提
10、出了存容比及摩擦损失的计算方法。图1 气液混合物流动型态(Orkiszewski) 1.压力降公式及流动型态划分界限由前面垂直管流能量方程可知,其压力降是摩擦能量损失、势能变化和动能变化之和。由式(2-36)可直接写出多项垂直管流的压力降公式: (26)式中 压力,Pa; 摩擦损失梯度,Pa/m; 深度,m; 重力加速度,m/s2; 混合物密度,kg/m3; 混合物流速,m/s。动能项只是在雾流情况下才有明显的意义。出现雾流时,气体体积流量远大于液体体积流量。根据气体定律,动能变化可表示为: (27)式中 管子流通截面积,m2; 流体总质量流量,kg/s; 气体体积流量,m3/s。将式(27)
11、代入式(26),并取,经过整理后可得: (28)式中 计算管段压力降,Pa; 计算管段的深度差,m; 计算管段的平均压力,Pa。不同流动型态下的和的计算方法不同,下面按流型分别介绍。(1)泡流平均密度式中 气相存容比(含气率),计算管段中气相体积与管段容积之比值; 液相存容比(持液率),计算管段中液相体积与管段容积之比值; 在下气、液和混合物的密度,kg/m3。气相存容比由滑脱速度来计算。滑脱速度定义为:气相流速与液相流速之差。可解出: 式中 滑脱速度,由实验确定,m/s; 、气相和液相的表观流速,m/s。泡流摩擦损失梯度按液相进行计算:式中 摩擦阻力系数; 液相真实流速,m/s。摩擦阻力系数
12、可根据管壁相对粗造度和液相雷诺数查图2。液相雷诺数: 式中 在下的液体粘度,油、水混合物在未乳化的情况下可取其体积加权平均值,Pa.s。图 2(2)段塞流混合物平均密度 (34)式中 液体分布系数; 滑脱速度,m/s。滑脱速度可用Griffith和Wallis提出的公式计算: (35) (3)过渡流过渡流的混合物平均密度及摩擦梯度是先按段塞流和雾流分别进行计算,然后用内插方法来确定相应的数值。 (36) (37)式中的、及、为分别按段塞流和雾流计算的混合物密度及摩擦梯度。(4)雾流雾流混合物密度计算公式与泡流相同:由于雾流的气液无相对运动速度,即滑脱速度接近于雾,基本上没有滑脱。所以 (38)
13、摩擦梯度则按连续的气相进行计算,即 (39)式中 气体表观流速, ,m/s。雾流摩擦系数可根据气体雷诺数和液膜相对粗糙度由图2查得。按不同流动型态计算压力梯度的步骤与前面介绍的用摩擦损失系数法基本相同,只是在计算混合物密度及摩擦之前需要根据流动型态界限确定其流动型态。图3为Orkiszewski方法的计算流程框图。图3 Orkiszewski方法计算流程框图2.3悬点载荷和抽油杆柱设计计算 抽油杆柱设计的一般方法见采油工程设计与原理。之所以设计方法较复杂,原因之一是因为杆柱的最大、最小载荷与杆长不是线性关系。例如在考虑抽油杆弹性时的悬点载荷、在考虑杆柱摩擦时的悬点载荷公式与杆长不是线性关系。原
14、因之二是因为杆、管环空中的压力分布取决于杆径,而杆柱的设计有用到杆、管环空中的压力分布。 由于综合课程设计时间较少,所以这里提供一种简化杆柱设计方法。暂将杆、管环空中的压力分布给定(按油水两相、不考虑摩擦时的压力分布),杆柱的最大、最小载荷公式采用与杆长成线性关系的下面公式。它是针对液体粘度较低、直井、游梁抽油机的杆柱载荷公式。 悬点最大、最小载荷的计算公式: (40) (41) (42) 式中:第i级杆每米杆在空气中的质量,Kg/m 第i级杆杆长,m; i 抽油杆级数,从下向上计数; PZ泵排出口压力,Pa;PN泵的沉没压力,Pa;N冲次,rpm;S光杆冲程,m;fP活塞截面积,m2;g重力
15、加速度,m/s2; (43) (44) 式中:令fr0=0 Pj第j级抽油杆底部断面处压力,Pa: (45) Pt井口油压,Pa; 0地面油密度,kg/m3; fw体积含水率,小数;应力范围比计算公式: (46) (47) 抽油杆柱的许用最大应力的计算公式:式中:抽油杆许用最大应力,Pa; T抽油杆最小抗张强度,对C级杆,T=6.3*108Pa,对D级杆T=8.1*108Pa; 抽油杆最小应力,Pa; 使用系数,考虑到流体腐蚀性等因素而附加的系数(小于或等于1.0),使用时可考表2来选值。表2 抽油杆的使用系数使用介质API D级杆API C级杆无腐蚀性1.001.00矿化水0.900.65含
16、硫化氢0.700.50若抽油杆的应力范围比小于则认为抽油杆满足强度要求,此时杆组长度可根据直接推导出杆柱长度的显示公式。对于液体粘度低的油井可不考虑采用加重杆,抽油杆自下而上依次增粗,所以应先给定最小杆径(19mm)然后自下而上依次设计。有应力范围比的计算公式即给定的应力范围比(0.85)计算第一级杆长L1,若L1大于等于泵深L,则抽油杆为单级杆,杆长为L,并计算相应的应力范围比,若L1小于泵深L,则由应力范围比的计算公式及给定的应力范围比计算第二级杆长L2,若L2大于等于(L-L1),则第二级杆长为L2,并计算相应的应力范围比,若L2小于(L-L1),则同理进行设计。在设计中若杆径为25mm
17、仍不能满足强度要求,则需改变抽汲参数。在设计中若杆径小于或等于25mm并满足强度要求,则杆柱设计结束。此为杆柱非等强度设计方法。若采用等强度设计方法,则需降低重新设计杆的长度。在设计抽油杆的过程中油管直径一般取(外径73mm,内径62mm)。若泵径大于或等于70mm,则油管全用(外径89mm, 内径76mm),原因是作业时大柱塞不能下如小直径油管中;若采用25mm抽油杆,则相应油管直径应用,原因是25mm抽油杆节箍为55mm,与62mm油管间隙太小。当采用多级杆时油管长度比25mm杆长多10m。为了减小计算工作量,在本次课程设计中杆柱设计简化处理,采用单级杆设计(19mm)。设计内容如下:由于
18、采用单级杆设计,且杆径为19mm,所以选用油管的直径为:62mm。计算内容和步骤:最大载荷: =0.0014999110=1499.9N;由于是单级的计算,所以简化为: =78509.81200=26174.24N (1499.9+26174.24)(1+) =29343.66N 2、 最小载荷: 式中:令fr0=0. 由于,在该设计过程之中,只有一级杆,所以公式变为: =1+10.631= 11.631 Mpa =26174.24N 11.631 (0.0014999-0) 10=8728.9N =8728.9 - =7149.68N 2.4 抽油机校核1)最大扭矩计算公式 =1800 3+
19、0.202 3 (29343.66 - 7149.68)= 18849.55N.m 2)电动机功率计算, =7860.53W 所以,可知电机的计算功率小于电机的额定功率,因而符合要求。2.5 泵效计算 (1)泵效及其影响因素在抽油井生产过程中,实际产量Q一般都比理论产量Qt要低,两者的比值叫泵效,表示, (50)(2)产量计算 根据影响泵效的三方面的因素,实际产量的计算公式为 (51)式中:Q实际产量,m3/d; Qt理论产量,m3/d; Sp柱塞冲程,m; S光杆冲程,m; 抽油杆柱和油管柱弹性伸缩引起冲程损失系数; Bl泵内液体的体积系数; 泵的充满系数; qleak检泵初期的漏失量,m3
20、/d;1)理论排量计算 =1400 0.001499936=37.80 m3/d 2)冲程损失系数的计算根据静载荷和惯性载荷对光杆冲程的影响计算本设计按照油管未锚定计算。当油管未锚定时; 由于只有一级抽油杆柱,所以公式简化为: =1.018式中:uL/a=0.1478 曲柄角速度,rad/s;N/30=6/30=0.6283; a声波在抽油杆柱中的传播速度,5100m/s; =1 10 0.0014999=1499.9NPZ泵排出口压力,Pa;Pin泵内压力,Pa;当液体粘度较低时,可忽略泵吸入口压力,故PinPN;PN泵的沉没压力,Pa; fp、fr、ft活塞、抽油杆及油管金属截面积,m2;
21、 L抽油杆柱总长度,m; l液体密度,kg/m3; E钢的弹性模数,2.061011Pa; Lf动液面深度,m; L1、L2、L3每级抽油杆的长度,m; fr1、fr2 、fr3每级抽油杆的截面积,m23) 充满系数的计算 = 0.4814 式中:K泵内余隙比;取0.1. R泵内气液比; = =0.892 =50,m3(标)/m3;=10m3(标)/m3;=3M Pa;=0.4;P0=105Pa; T0=293K;273t=351.66;Z=0.96 4) 泵内液体的体积系数Bl =1.0462 5)漏失量的计算 检泵初期的漏失量为0m3/d; D=0.044m;=0.00053Pas;l=
22、1.5m;PPZPN=10Pa;g=9.8m/s2;e= 0.00005m;=0.6m/s;所以最终算出泵的效率:=46.822.6举升效率计算 光杆功率:P光= SN/60 = 8728.936/60=2618.67水力功率:P水力Q实际(PZPN)/86.4=17.7110/86400=204.94 井下效率:井下P水力 / P光 =0.0783 地面效率:地P光/ P电机 =0.3331 系统效率:总P地* P井下 =0.0261 三、注水措施建议1、水质要求:油田注水所要求的水源不仅量大,而且希望水源的水量和水质较为稳定。这样,在水源充足的地方,有个水源选择问题;水源缺乏的地方,需要寻
23、找水源并进行选择。陆地水源包括地面的江、湖,泉水和地层水。海上包括海水和通过海底浅井抽取海水。水源选择要考虑到水质处理工艺要简便,还要满足油田注水设计的最大注水量。水源水量的估计以设计注水量为依据,如果采出的污水大部分回注的话,最终所需要的水量,大致为注水油层孔隙体积的150170%。(1)地面水源淡水河、湖、泉水已广泛用于注水。随着国家建设的发展,工农业对这种水源使用也愈来愈广,加上可能遇到自然干旱,对注水可能供不应求。所以使用这种水源一般要得到有关部门的批准。另外,这种地面水源,特别是小溪、泉的水量常是随着季节变化的,并且常常是高含氧,携带很多悬浮物和各种微生物,不同季节水质成分变化很大,
24、从而给水质处理带来许多麻烦。胜利油田注水所用的黄河水属这种水源,特点是:有大量的泥沙和杂质,其含量在200ppm以上,并随季节变化;矿化度不高,一般在500600ppm;属于硫酸水型;含铁在0.5ppm左右。因此,黄河水要经过沉淀、过滤、杀菌和脱氧处理才能使用。(2)来自河床等冲积层水源淡水这种水是通过在河床打一些浅井到冲积层的顶部,从而使水质得到一定的改善。其特点是:水量稳定,水质变化不大,通常无腐蚀性;由于自然过滤,混浊度不受季节影响;水中含氧稳定便于处理,但由于硫酸还原菌深埋地下,这种水仍可能受到它的污染。因此,把井钻深一些,以便排除或减少这种细菌的影响。(3)地层水水源淡水或盐水地层水
25、源是根据地质资料,通过钻专门的水井而找到的来自地下的水源。找到高压、高产量的淡水层最好,盐水层也行,若找不到单一水层,多层水层也可以,但应注意,不同水层的水彼此不要产生化学反应而结垢。盐水也有它的好处,可以防止注水所引起的粘上膨胀。(4)海水盐水近海和海上油田注水,一般用海水。因它既多又方便,但因高含氧和盐,腐蚀性强。悬浮的固体颗粒随季节变化较大,为改善这一点,通常钻一些浅井到海底,使其过滤从而减少水的机械杂质。2、水质处理:在水源确定的基础上,一般要进行水质处理。从防止设备腐蚀及地层堵塞的角度,对水质提出基本要求。主要是机械杂质堵塞、电化学腐蚀及生成物堵塞,细菌腐蚀及堵塞。机械杂质的含量根据
26、地层性质来定。国外对低渗透的孔隙性地层,含量要求小于0.10.5ppm,高渗透层或裂缝性地层含量可达10ppm。机械杂质颗粒大小,一般应小于岩石孔隙喉道的110。颗粒直径大于13喉道直径,对地层堵塞很快,但解诸也容易,固颗粒不能进入地层深部。国外用现场注入水通过孔径为0.45的滤纸测定其半衰期(注水量降至1/2时,为半衰期),以半衰期的长短来对比水质,半衰期缩短了认为水质不合格。地面水和海水作为油田注入水时,一般都要经过除氧、杀菌处理,否则,会带来严重的后果。如加拿大帕宾那油田由于注入水未除氧、杀菌,结果天然气中由原来基本上不含H2S升高到15pm的H2S,井下和地面设备的腐蚀都增加了。天然气
27、已不符合销售要求,使增加H2S的处理设备。常用的水处理措施有:沉淀、过滤、脱氧、暴晒。四、设计计算总结果基础数据设计结果学号 509287配产量50t/d抽油杆型号D级采油指数1.4t/(d.Mpa)井深2870m井底流压16.35Mpa静压34.44MPa下泵深度1200m油层温度90泵排出口压力2 MPa (假设)含水率0.4悬点最大载荷29343.66N电机额定功率37kw悬点最小载荷7149.68N油压1MPa抽油杆应力范围比22-25mm生产气油比50m3/m3生产需要电机功率2823.61抽油机型号CYJ10353HB最大扭矩18849.55N.m泵径44mm抽油杆是否满足生产是冲
28、程3m抽油机是否满足生产是冲次6rpm五、课程设计总结在这次采油工程的课程设计过程之中:1、熟悉并掌握了,IPR曲线的画法,了解了IPR曲线的应用;2、多相管流的计算是一个难点,首先是计算的公式很多,计算重复性大,其次是过程复杂,总的来说,掌握了多相管流的Orkiszewski方法计算步骤,能运用压力迭代法和深度迭代法;3、掌握了悬点载荷及抽油杆柱的设计计算、泵效计算。 这次作业的收获很多,通过做作业对书本上的知识加深了理解,在作业的过程之中也培养了自己独立思考和解决问题的能力,比如在作业过程之中,自己将所有的计算公式用Excel编制,不需要用计算器重复计算。 本次作业的不足之处,尽管自己将公式做了如上的处理,但是作业过程之中,一部分公式的字母所代表的意思不是很清楚。并且在利用Orkiszewski方法判断流型时,过程太繁琐,且在查阅图件时摩擦阻力系数也不能准确的获得,所以深度迭代计算过程只止步于判断流型。因而在后续计算之中,需要泵出口压力的地方,是采用假设的泵入口压力进行计算的。假设泵出口的压力为:2MPa和下泵深度1200m. 利用假设的压力进行了悬点的载荷的计算和抽油杆杆柱的设计。