2022年“随机数的产生”的教学设计 .pdf

上传人:C****o 文档编号:24116483 上传时间:2022-07-03 格式:PDF 页数:13 大小:579.74KB
返回 下载 相关 举报
2022年“随机数的产生”的教学设计 .pdf_第1页
第1页 / 共13页
2022年“随机数的产生”的教学设计 .pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2022年“随机数的产生”的教学设计 .pdf》由会员分享,可在线阅读,更多相关《2022年“随机数的产生”的教学设计 .pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、名师精编优秀教案“(整数值 )随机数的产生”的教学设计杭州市余杭高级中学童元意一、内容和内容解析本节课的内容是介绍利用计算器或计算机产生取整数值的随机数的方法,让学生初步学会利用计算器或计算机统计软件Excel 产生随机 (整数值) 数进行模拟试验它是在学生学习了随机事件、频率、概率的意义和性质以及用概率解决实际问题和古典概型的概念后,为了让学生进一步体会用频率估计概率思想,同时也是为了更广泛、有效地解决一些实际问题、体现信息技术的优越性而新增的内容计算随机事件发生的概率,除了用古典概率的公式来计算外,还可以通过做试验或者用计算器、 计算机模拟试验等方法产生随机数,从而得到事件发生的频率,以此

2、来近似估计概率产生(整数值)随机数的方法有两种:(1)是由试验产生的随机数,例如我们要产生125 之间的随机整数,我们把 25 个大小形状等均相同的小球分别标上1,2,3, 24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个球,这个球上的数就是随机数它的优点在于真正体现了随机性,缺点在于如果随机数的量很大,统计起来速度就会太慢;(2)是用计算器或计算机产生的随机数,它的优点在于统计方便、速度快,缺点在于,计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,是伪随机数教学中将结合具体实例,让学生了解随机数在一些随机模拟方法

3、中的作用,加深对随机现象的理解, 然后通过计算器 (机) 模拟估计古典概型随机事件发生的概率和建立非古典概型题求解用模拟方法来估计某些随机事件发生概率的必要性:通过大量重复试验,用随机事件发生的频率来估计其概率,但人工进行试验费时、费力,并且有时很难实现这部分内容是新增加的内容,是随机模拟中较简单、易操作的部分, 所以要求每个学生会操作利用古典概型产生的随机数是取整数值的随机数. 本节课的教学重点是了解随机数的概念,运用随机模拟的方法得到事件发生的频率,以此来近似估计概率二、目标和目标解析名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学

4、习资料 - - - - - - - - - - - - - - - 第 1 页,共 13 页 - - - - - - - - - 名师精编优秀教案本节课让学生理解产生(整数值)随机数的意义,并初步学会利用计算器或计算机模拟试验方法产生随机数,理解随机模拟方法的基本思想:初步学会设计和运用模拟方法近似计算概率1 在回顾利用大量重复试验来统计频数耗时,让学生理解随机模拟的必要性,初步体验随机模拟思想2 在介绍如何利用计算器产生之间取整数值的随机数和抛掷硬币转化为产生随机数0,1 的过程中,让学生初步熟悉利用计算器产生(整数值)随机数的方法,进一步理解频数的随机性和相对稳定性3 介绍利用计算机统计软

5、件Excel 产生(整数值)随机数的方法,让学生理解随机模拟的基本思想是用频率近似估计概率理解概率的意义,与前面第一节学习内容相呼应4通过练习和例题的具体实例让学生设计一种随机模拟方法,使学生初步掌握建立概率模型,应用计算器或计算机统计软件Excel 来模拟试验的方法近似计算概率,即初步掌握随机模拟方法(蒙特卡罗(Monte Carlo )方法),并初步学会设计一些模拟试验解决一些较简单的现实问题三、教学问题诊断分析从学生的认知基础和认知结构看,第一,在初中学生虽然对利用计算器进行常规操作已非常熟练,但是对于利用随机函数产生随机数掌握参差不齐,有些先实行初中课改的地区(如余杭等)已在课堂上了解

6、过随机知识,但有些地区可能对这一知识的了解属于空白;第二,学生对计算器或计算机所产生的随机数的“不确定性” 可能有怀疑, 对试验及试验结果的科学性也可能会有所质疑;第三由于没有随机模拟的体验和认识,对于随机模拟方法的理解有一定的难度; 第四如何把具体问题转化为随机模拟问题来解决,如何建立概率模型,即设计随机模拟方法中的随机数与具体问题中的具体情形相对应,这是一个关键, 由于学生积累的经验还不够,这也是一个教学难点从教师这方面看,首先这部分内容操作性强,鉴于教学条件及学生的差异,高效的组织教学将是一个突出的问题;其次学生虽然已对于随机事件、频率、概率的意义、古典概型等方面都有所认识,但不可能从根

7、本上理解随机模拟方法,在完成操作任务的同时,还要结合一些典型案例的处理,使学生经历较完整的数据处理的全过程,在过程中让学生体会随机模拟的基本思想, 学习数据处理的方法,把理性的认识和实际的操作结合起来,对教师驾驭课堂、灵活应变能力提出了较高的要求四、教学支持条件分析由于教学中要求学生能够利用计算器产生整数值随机数,因此学生的计算器课前要准备,或者让学生自己事先看说明书同时教师可让学生了解计算机产生随机数方法名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共

8、13 页 - - - - - - - - - 名师精编优秀教案为了有效实现教学目标,条件许可,有条件的学校可让学生上机操作,可安装好有统计功能的软件,如Excel 等具有随机函数的统计软件,让学生上机操作模拟试验五、教学过程设计(一)课题引入,为什么要学习本节的内容(学习本节的必要性)(1)在前面第一节中,同学们做了大量重复的试验,用频率去估计概率,这种方法比较通用,但有的同学可能觉得这样做试验花费的时间太多那怎么办?(2)在概率求解中我们也发现一些随机事件的试验具有一些共同特征,所以我们在上一节把一类特殊的随机事件的概率求解转化为古典概型求解,使运算简单化, 但我们只能解决一些简单的古典概型

9、问题,对于一些基本事件数比较大时,我们很难把它列举得不重复不遗漏,同时对于随机事件中所包含的基本事件数又容易算错,而且对于基本事件的等可能性又比较难于验证同时还有一些概率模型题不属于古典概型,我们又如何求解这类题(二)问题情境,引出概念针对以上原因,我们提出这样一个课题情境 1:关于 20XX 年一季度杭州市饮用水省级监督抽查中,共抽查我市41 批次饮用水,合格37 批次,抽查合格率90.2% ,其中,抽查纯净水21 批次,合格19 批次,抽查合格率90.5% ;抽查矿泉水3 批次,全部合格,抽查合格率继续保持100.0% ;抽查天然水 17 批次,合格15 批次,抽查合格率88.2% ,问

10、1:假设你是一名饮用水卫生工作人员,要从82 批次饮用水中抽取41 批次进行卫生达标检查,你准备怎么做?问 2:假如我们需要是从8200 批次饮用水中抽取410 批次进行检验,你又打算怎么办?设计意图:通过情境1 的问题让学生能回忆起前面统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征,初步了解随机数的意义,又让学生明白这就是一种用手工试验产生整数值随机数的方法,从而让学生对随机数这个名称有更进一步的认识,加强知识之间的纵向联系,使学生从具体试验中了理解随机数的含义师生活动: 教师引导,学生思考回答:预设学生回答一:采用简单随机抽样(抽签法)方法:如摸球法或转盘法我们把 8

11、2个大小形状等均相同的小球标上00,01,02,39,40号签 , 放入一个不透明的袋中, 把它们名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 13 页 - - - - - - - - - 名师精编优秀教案充分搅拌 ,然后每次从中摸出一个球, 一共摸 41 次球,就得到一组抽样数据预设学生回答二:采用简单随机抽样方法(随机数表法)等教师可展示:采用简单随机抽样方法(随机数表法):比如给出第6 行到第 8 行的随机数表:16 22 77 94 39 49

12、 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 显示随机数表设计意图:是让学生脑海中有两位随机数这样一种直观印象,为后面问题6 中的三天恰有两天下雨这一事件,如何想到用三位随机数组模拟作第一次小铺垫教师: 每次摸出一个球,这个球上的数就

13、是随机数由于随机数表的每个数都是随机产生的, 我们也可以利用随机数表产生随机数随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样引入课题,板书本节课题情境 2:在第一节中,同学们做了大量重复的试验,比如抛硬币和掷骰子的试验,用频率估计概率,假如现在要作1000 次掷骰子试验,你打算怎么办?设计意图: 通过情境2 的问题让学生进一步体会当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,也就很自然转到利用计算器或计算机产生随机数的必要性在问题的思考过程中让学生自我发现问题,主动解决问题的欲望师生活动: 教师在表述问题的过程中,学生思考讨论,

14、急于寻找解决问题的方案(三)操作实践,了解概念问题 1:利用手工试验产生随机数的速度太慢,你有其它方法来代替试验呢?设计意图 :让学生了解总体个体数不是很大时,可以利用手工随机试验的方法,如果需要随机数的量很大, 随机试验的方法不是很方便,速度太慢 促使学生去探求更方便的方法,从而培养学生在学习中善于发现问题、解决问题的能力 让学生在已有的环境中进一步寻找解决问题的途径, 激发学生学习新知识的热情和兴趣现代信息技术的高速快捷是学生所熟悉的工具, 学生很容易想到利用计算器来产生随机数学生最熟悉就是计算器,但对计算器的随机函数的操作对于学生来说,是比较陌生的内容,很难找到一个思考的方向所以以老师介

15、绍计算器的操作为主,了解随机函数的原理后,再看看计算器说明书,学生会很容易掌握计算器的操作名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 13 页 - - - - - - - - - 名师精编优秀教案师生活动 :学生可能回答借助计算器,但对于具体操作不是清楚教师事先可以编制几个小问题,让学生熟悉这款新型CASIO计算器 fx-991ES 2. 小数点位数的有趣试验:按以下要求显示, 你能利用计算器显示: 小数点位数为 0;小数点位数为8 为;小数点位数为

16、18 位(挑战极限题:计算器显示的小数位数最多为 9 位)教师介绍 , 在利用计算器产生随机数可以先进行以下操作就可以产生整数值的随机数CASIO 学生用计算器fx991ES 步骤如下:设计意图: 由于这一部分内容是新增内容,学生以前没接触过, 大部分学生没多大反应,这时教师在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍 对于问题 2 ( 1)主要是让同学在理解原理后,通过操作熟悉计算器操作流程在学生明白原理后, 通过让学生自己按照规则操作,一方面,降低了问题的难度,切合学生的思维,通过操作熟悉操作流程;另一方面,使问题有了内在的“逻辑”联系,让学生觉得有迹可寻,有据可依,在思维上

17、起到了自然的顺应过程,让学生熟悉计算器产生随机数的操作流程,了解随机数 通过(2)至( 5)的一系列问题的思考,让学生对利用计算器产生随机数的思维层次再上升到一个新名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 13 页 - - - - - - - - - 名师精编优秀教案台阶,对于问题2(1)(2)让学生登记操作记录主要是为后面问题6 中的三天恰有两天下雨这一事件, 如何想到用三位随机数组模拟作第二次小铺垫同时让学生逐步熟悉计算器产生取整数值随机数的操

18、作流程师生活动: 教师提出问题,学生自己利用计算器操作让学生实践操作,熟悉计算器的操作功能,学生把操作出现随机数0, 1和随机数之间整数分别填在操作记录单上(四)解决问题,促进学生掌握随机模拟试验方法1模拟感知,操作体验问题 3:我们知道,抛一枚质地均匀的硬币出现正面向上的概率是50% ,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?设计意图: 设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步抛硬币是学生最熟悉也是最简单的问题,他们会很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替题目中故意以50% 的这个数字出现,主要是让学生通过熟悉5

19、0% 想到用随机数0,1 来模拟, 为后面问题6 每天下雨的概率为40% 的概率建模作第一次小铺垫通过此问题使学生的学习最近发展区得到激发,充分调动了学生学习的积极性 这样既能让学生继续熟悉利用计算器模拟试验的操作流程,同时为学生解决后面例题模拟下雨作好铺垫师生活动 :教师给出问题,学生独立思考,探讨解决方案通过教师的问题启发,师生共同分析抛掷硬币的结果有两个基本事件数:正面向上、 反面向上 我们只要用两个取整数值的随机数代替这两个基本事件就可以了学生边操作边把数字记录在记录单上2思考质疑,提升认识思考: 随着模拟次数的不同,结果是否有区别,为什么?设计意图: 虽然在概率第一节学生已做过多次的

20、手工抛掷硬币试验,现在通过让学生模拟试验,当试验次数很多时,进一步体会频率的稳定性一方面: 要让学生熟悉计算器随机模拟操作, 另一方面:进一步理解进行大量重复试验次数越多,频率越接近概率这样即能回顾前面所学的知识,又使知识更加系统化,便于学生掌握同时培养团结合作的精神名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 6 页,共 13 页 - - - - - - - - - 名师精编优秀教案师生活动: 教师巡视,学生操作统计,思考交流3多种工具,掌握方法教师:刚才我们利

21、用了计算器来产生随机数,我们知道计算机有许多统计功能的软件,而且可以直接统计频数和计算频率,每个具有统计功能的软件都有随机函数.问题 4:(1)你会利用统计软件Excel 来产生随机数0,1 吗?你能设计一种利用计算机模拟掷硬币的试验吗?设计意图: 通过此问题的提出,主要是让学生了解有许多统计软件都有随机函数这个功能,在以前我们其实已经接触过,并与前面第一章所学的用Qbasic语言编写程序相联系 Excel 是学生比较熟悉统计软件,也可让学生回顾初中用Excel 画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法师生活动: 学生可在教师提示下回答,一般都了解Excel 软件教师先引导

22、, 然后与学生一起熟悉一下Excel 软件, 了解产生随机数的函数,画统计图的功能及对统计数据结果的处理功能,这块内容基本上以教师介绍为主,教师可以边介绍边操作,可以事先做好Excel 每个可操作工作表教师:介绍操作思路:(1)选定A1 格,键入“ =RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0 或 1并介绍随机函数randbetween (a,b)产生从整数 a 到整数 b 的取整数值的随机数( 2)选定A1 格,按 Ctrl+C快捷键,然后选定要随机产生0、1 的格,比如A2 至 A100快捷键,则在A2至 A100的数均为随机产生的0 或 1,这样我们

23、很快得到了100 个随机产生的 0,1,相当于做了100 次随机试验问题4:( 2)为了统计方便和更直观了解出现正面向上的频率分布折线图,我们还需作一些什么准备?设计意图 :通过边操作边提出问题,主要是让学生能进一步巩固和熟悉画一些统计图的功能,和对统计结果数据的处理功能师生活动 :教师可以边操作边提出问题,学生观察、思考、熟悉操作一般统计步骤教师:介绍操作思路:(3)选定 C1格,键入频数函数“=FREQUENCY(A1:A100,0.5 )” , 按 Enter键,则此格中的数是统计A1至 A100中, 比 0.5 小的数的个数,即0 出现的频数,也就是反面朝上的频数名师归纳总结 精品学习

24、资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 13 页 - - - - - - - - - 名师精编优秀教案(4)选定 D1格,键入“ =1C1/100 ”,按 Enter 键,在此格中的数是这100 次试验中出现 1 的频率,即正面朝上的频率问题 5:(1)你能在Excel 软件中画试验次数从1 到 100 次的频率分布折线图吗?(2)当试验次数为1000,1500 时,你能说说出现正面向上的频率有些什么变化?设计意图: 在学生的估计、猜测然后进行实际操作中,( 在学生经

25、历估计- 猜测 - 实际操作的过程中) 体会应用随机模拟方法估计古典概型中随机事件的概率值的方法,并让学生理解随机模拟的基本思想是用频率接近概率,频率由试验获得,概率由古典概型得到同时通过多次重复试验,引导学生体会频率的随机性与相对稳定性让学生经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性师生活动: 教师引导,学生自己试验、观察、操作、直观感受教师指出: 上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Monte Carlo )方法蒙特卡罗方法(Monte Carlo method

26、 ),也称统计模拟方法,或称计算机随机模拟方法,是一种基于“随机数” ,以概率统计理论为指导的一类非常重要的数值计算方法与它对应的是确定性算法蒙特卡罗模拟源于美国在第二次世界大战进研制原子弹的“曼哈顿计划”,该计划的主持人之一数学家冯诺伊曼对裂变中的中子随机扩散直接模拟并用摩纳哥国的世界赌城Monte Carlo 作为秘密代号来称呼蒙特卡罗方法在金融工程学,宏观经济学,在应用物理、原子能、固体物理、化学、生物、生态学等领域都得到了广泛的应用计算机技术的发展,使得蒙特卡罗方法在最近10 年得到快速的普及现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实

27、验过程,变成了快速和轻而易举的事情它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用借助计算机技术,蒙特卡罗方法实现了两大优点:一是简单, 省却了繁复的数学报导和演算过程,使得一般人也能够理解和掌握;二是快速;三是节省资源(五)加强应用,掌握随机模拟试验方法问题 6:(1)种植某种树苗的成活率为50% ,若种植这种树苗2 颗,你能设计一种随机模拟的方法近似求恰好成活1 棵的概率吗?名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 8 页,共 13 页 -

28、 - - - - - - - - 名师精编优秀教案变式( 1)种植某种树苗的成活率为,若种植这种树苗2 颗,你能设计一种随机模拟的方法近似求恰好成活1 棵的概率吗?设计意图: 此问题的设计主要是为后面问题6(2)解决作第二次铺垫,将一枚质地均的硬币连续抛两次这试验在第一节中已比较熟悉,又学了古典概型后,对这样的试验出现几个基本事件数己掌握,但学生对概率值与用随机数来模拟这个桥梁(即数学模型)搭建还需要一个过程,所以需要让学生经历方法形成和体验这样一个过程师生活动: 教师留给学生足够时间思考,让学生把25% 与随机数的建立联系,这桥梁搭建还是比较快速而且也比较容易的学生经过独立思考,探讨交流,给

29、出各种解决方案问题 6:(2)天气预报说,在今后的三天中,每一天下雨的概率均为40% ,这三天中恰有两天下雨的概率是多少?问 1:能用古典概型的计算公式求解吗?问 2:你如何模拟每一天下雨的概率为40% ?设计意图: 给出这道题主要让学生学会利用所学的随机模拟方法来解决实际问题,是对思想方法的一种应用通过把问题分层提出,主要是降低本题难度如何模拟每一天下雨的概率 40% 是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一难点之二让每三个随机数作为一组,这在前面通过登记操作记录单和以数组出现得到分散让学生体会如何用随机模拟的方法估计概率,并使学生学会巩固用随机模拟方法估计未知量的基本思想

30、同时让学生明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题师生活动 :教师给出足够时间让学生思考,对于前面两小问可让学生独立思考,作出回答教师适当给予点拨师生共同分析: 这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式用计算器或计算机做模拟试验可以模拟下雨出现的概率是 40% 第一步,设计概率模型:分析:我们通过设计模拟试验的方法来解决问题利用计算器或计算机可以产生0 到 9之间取整数值的随机数,我们用1,2,3,4 表示下雨,用5, 6,7,8,9,0 表示不下雨,这样可以体现下雨的概率是40% 因为是3 天,所以每三个随机数作为一

31、组第二步,进行模拟试验:这部分内容安排学生以小组为单位,分工合作,教师事先作好统计表格,要求学生完成好,报上试验次数和三天中恰好两天出现的次数名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 9 页,共 13 页 - - - - - - - - - 名师精编优秀教案方法一:(随机模拟方法计算器模拟)利用计算器随机函数方法二:(随机模拟方法计算机模拟)其中A,B,C三列是模拟三天的试验结果,D,E,F 列为统计结果,D 列表示如果三天中恰有两天下雨,则D 为 1,否则

32、D 为 0,E1 表示 30 天中恰有两天下雨的天数,F1 表示 30 天恰有两天下雨的频率第三步,统计试验的结果例如,产生20组随机数907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989就相当于做了20 次试验,在这组数中,如果恰有两个数在1,2,3,4 中,则表示恰有两天下雨,它们分别是191,271,932,812,393,即共 5 个数我们得到三天中恰有两天下雨的概率近似为思考 3: 你得到的频率值与课本上得到的概率近似值25% 怎么不相同 ?为什么会有这种差异?思考 4:你知道老

33、师为什么让你们做这些活动吗?思考 5:你能用随机模拟方法编拟一道相类似的概率题吗?设计意图: 让学生进一步通过具体的事例理解频率估计概率,频率值的随机性与相对稳定性师生活动: 学生可操作试验,讨论回答(六)归纳小结, 整体认识问题 8:(1)你能归纳利用随机模拟方法估计概率的步骤吗?名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 10 页,共 13 页 - - - - - - - - - 名师精编优秀教案(2)通过此例,你能体会到随机模拟的优势吗?请举例说说设计意图

34、: 通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势同时既是对知识的进一步理解与思考,又是对本节内容的回顾与总结师生活动: 教师引导学生思考总结用随机模拟方法估计概率,解决具体问题的一般步骤:( 1)建立概率模型,这是非常关键的一步如模拟每一天下雨的概率为40% (2)进行模拟试验,可用计算机或计算器模拟试验(3)统计试验的结果教师:投影随机模拟方法的优势:(1)简单:省却了繁复的数学报导和演算过程,使得一般人也能理解和掌握,(2)快速:节省时间. (3)节省资源六、目标检测设计(一)课堂检测1 . 将一枚质地均匀的硬币连掷三次,出现“2 个正面朝上、1个反面朝上”和“

35、1个正面朝上、 2 个反面朝上”的概率各是多少?并用随机模拟的方法做100 次试验,计算各自的频数设计意图: 初步学会运用随机模拟方法估计具体事例的概率,与利用古典概型公式相比较理解频率的随机性和相对稳定性的含义师生活动:给学生足够的思考时间,教师巡视了解学生活动情况. 教师在学生活动后调用展示学生活动成果2. 从 52 张扑克牌 ( 没有大小王 ) 中随机地抽一张牌, 这张牌出现下列情形的概率:(1)是 7 (或不是7) ;(2)是方片;( 3)是 J 或 Q或 K(或比 6 大比 9 小); (4)是红色;(5)是红色或黑色 (或既是红心又是草花). 请设计一种用计算机或计算器模拟上面摸牌

36、试验的方法设计意图: 通过让学生自主设计随机模拟的方法,调动学生的学习积极性师生活动: 充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程并要求学生说明解答的依据教师在学生活动后调用展示学生活动成果,通过讲授、 修订形成下面成果 .展示学生的模拟方法:方法 1:(利用古典概型的公式)求出概率的精确值名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 11 页,共 13 页 - - - - - - - - - 名师精编优秀教案方法 2:(随机模拟法计算器操作法

37、)把个自然数分别与每张牌对应,再用计算器模拟试验,统计出现的频数方法 3:(随机模拟法计算机操作法)让计算机分两次产生两个随机数,第一次产生的随机数,代表4 个花色;第二次产生的随机数,代表牌号(选讲题) 3( 1)掷两粒骰子,计算出现点数总和为7 的概率;(2)利用随机模拟试验的方法,试验200 次,计算出现点数总和为7 的频率;(3)所得频率与概率相差大吗?为什么会有这种差异?设计意图: 用古典概型计算公式求解与随机模拟试验用频率估计概率的优劣,进一步体会频率是概率的近似值,频率的随机性与相对稳定性(二)课后检测1盒中仅有4 个白球和5 个黑球,从中任意取出一个球.(1)“取出的球是黄球”

38、是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?(4)设计一个利用计算器或计算机模拟上面取球的试验设计意图: 熟悉利用古典概型计算公式求解,重点要让学生在不同的背景下学会思考如何建立概率模型这一重要环节2某城市的电话号码是8 位数,如果从电话号码本中任指一个电话号码,求:(1)头两位数码都是8 的概率;(2)头两位数码都不超过8 的概率;(3)头两位数码不相同的概率设计意图: 因为学生还没学排列组合的知识,用列举法转化为古典概型计算概率又很困难检测学生利用随机模拟试验方法估计概率,建立概率模型的掌握程度

39、如何名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 12 页,共 13 页 - - - - - - - - - 名师精编优秀教案3假设每个人在任何一个月出生是等可能的,利用随机模拟的方法,估计在一个有10个人的集体中至少有两个人的生日在同一个月的概率设计意图: 检测学生通过例1 的学习, 能否用随机模拟方法求概率利用列举法计算概率是很困难的, 但可以用随机模拟的方法求得概率近似解,使学生理解随机模拟得优点,充分发挥信息技术的优势4. 研究性课题:(1)要求每位学生用

40、计算器随机模拟掷一个硬币的试验20 次,统计出现正面(即1出现的次数) 的频数, 用得到的频率去估计概率,你认为这个估计的精度如何?误差大吗?(2)如果把同一小组每人得到的频率作为一组观测数据,计算这些数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,解释你们这组的模拟结果(3)如果把全班每人得到的频率作为一组观测数据,计算这些数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,并与(2)进行比较,解释这个模拟结果名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 13 页,共 13 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁