《2022年《离散数学》试题及答案解析 .pdf》由会员分享,可在线阅读,更多相关《2022年《离散数学》试题及答案解析 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、WORD 整理版专业资料学习参考一、填空题1 设集合 A,B,其中 A1,2,3, B= 1,2, 则 A - B _; (A) - (B) _ . 2. 设有限集合A, |A| = n, 则 |(AA)| = _.3.设集合 A = a, b, B = 1, 2, 则从 A到 B的所有映射是_ _, 其中双射的是 _. 4. 已知命题公式G (PQ)R, 则 G的主析取范式是_ _. 6 设 A、 B为两个集合 , A= 1,2,4, B = 3,4, 则从 A B_; AB _;A B _ . 7. 设 R是集合 A上的等价关系, 则 R所具有的关系的三个特性是_, _, _. 8. 设命
2、题公式G(P(Q R) ,则使公式G为真的解释有_ ,_, _. 9. 设集合 A1,2,3,4, A上的关系 R1= (1,4),(2,3),(3,2), R2= (2,1),(3,2),(4,3), 则 R1?R2 = _,R2?R1 =_, R12 =_. 10. 设有限集 A, B,|A| = m, |B| = n, 则| |(A B)| = _. 11 设 A,B,R 是三个集合,其中R是实数集, A = x | -1x1, xR, B = x | 0 x 6 (D)下午有会吗?5 设 I 是如下一个解释:Da,b, 0101b) P(b,a) P(b,b) P(a,),(aaP则在
3、解释 I 下取真值为1 的公式是 ( ). (A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)x yP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ). (A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H是一阶逻辑公式,P是一个谓词,G xP(x), HxP(x), 则一阶逻辑公式GH是( ). (A) 恒真的 (B)恒假的 (C)可满足的 (D)前束范式 . 8设命题公式G(PQ),HP(QP),则 G与 H的关系是 ( )。(
4、A)GH (B)HG (C)G H (D)以上都不是 . 9设 A, B 为集合,当 ( )时 ABB. (A)A B (B)AB (C)BA (D)A B. 10 设集合 A = 1,2,3,4, A上的关系R (1,1),(2,3),(2,4),(3,4), 则 R具有 ( )。(A) 自反性(B) 传递性(C) 对称性 (D)以上答案都不对11下列关于集合的表示中正确的为( )。(A)aa,b,c (B)aa,b,c (C)a,b,c (D)a,ba,b,c 12 命题xG(x) 取真值 1 的充分必要条件是( ). (A) 对任意 x,G(x) 都取真值1. (B)有一个 x0,使 G
5、(x0) 取真值 1. (C) 有某些 x,使 G(x0) 取真值 1. (D)以上答案都不对. 13. 设 G是连通平面图,有5 个顶点, 6 个面,则G的边数是 ( ). (A) 9条 (B) 5条 (C) 6条 (D) 11条. 15. 设图 G的相邻矩阵为0110110101110110010111110,则 G的顶点数与边数分别为( ). (A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8. 三、计算证明题1 2 3 4 5 6 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - -
6、- - - - - - - - 第 2 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考1. 设集合 A1, 2, 3, 4, 6, 8, 9, 12,R为整除关系。(1) 画出半序集 (A,R) 的哈斯图;(2) 写出 A的子集 B = 3,6,9,12的上界,下界,最小上界,最大下界;(3) 写出 A的最大元,最小元,极大元,极小元。2.设集合 A1, 2, 3, 4,A上的关系R (x,y) | x, yA 且 x y, 求(1) 画出 R的关系图;(2) 写出 R的关系矩阵 . 3.设 R是实数集合,, ,是 R上的三个映射,(x) = x+3, (
7、x) = 2x, (x) x/4,试求复合映射?,?, ?, ?,?. 4. 设 I 是如下一个解释:D = 2, 3, a b f (2) f (3) P(2, 2) P(2, 3) P(3, 2) P(3, 3) 3 2 3 2 0 0 1 1 试求 (1) P(a, f (a) P(b, f (b); (2) x y P (y, x). 5. 设集合 A 1, 2, 4, 6, 8, 12, R为 A上整除关系。(1) 画出半序集 (A,R) 的哈斯图;(2) 写出 A的最大元,最小元,极大元,极小元;(3) 写出 A的子集 B = 4, 6, 8, 12的上界,下界,最小上界,最大下界
8、. 6. 设命题公式G = (PQ)(Q(PR), 求 G的主析取范式。7. (9分 )设一阶逻辑公式:G = (xP(x) yQ(y) xR(x) ,把G化成前束范式 . 9. 设 R是集合 A = a, b, c, d. R是 A上的二元关系 , R = (a,b), (b,a), (b,c), (c,d), (1) 求出 r(R), s(R), t(R);(2) 画出 r(R), s(R), t(R)的关系图 . 11. 通过求主析取范式判断下列命题公式是否等价:(1) G = (P Q)(PQ R) (2) H = (P (QR) (Q(PR) 13. 设R和S是集合A a, b, c
9、, d 上的关系,其中R(a, a),(a, c),(b, c),(c, d), S(a, b),(b, c),(b, d),(d, d). (1) 试写出R和S的关系矩阵;(2) 计算R?S, RS, R1, S1?R 1. 四、证明题参考答案一、填空题1. 3; 3,1,3,2,3,1,2,3. 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考2.22n.3.1= (a,1)
10、, (b,1), 2= (a,2), (b,2),3= (a,1), (b,2), 4= (a,2), (b,1); 3, 4.4.(PQR).5.12, 3. 6.4, 1, 2, 3, 4, 1, 2. 7.自反性;对称性;传递性.8.(1, 0, 0), (1, 0, 1), (1, 1, 0).9.(1,3),(2,2),(3,1); (2,4),(3,3),(4,2); (2,2),(3,3).10. 2m n.11. x | -1x 0, xR; x | 1 x 2, xR; x | 0 x1, xR. 12. 12; 6.13. (2, 2),(2, 4),(2, 6),(3,
11、3),(3, 6),(4, 4),(5, 5),(6, 6).14.x(P(x) Q(x).15. 21.16. (R(a) R(b) (S(a) S(b).17. (1, 3),(2, 2); (1, 1),(1, 2),(1, 3). 二、选择题1. C. 2. D. 3. B. 4. B. 5. D. 6. C. 7. C. 8. A. 9. D. 10. B. 11. B. 13. A. 14. A. 15. D 三、计算证明题1. (1) (2) B无上界,也无最小上界。下界1, 3; 最大下界是3. (3) A无最大元,最小元是1,极大元 8, 12, 90+; 极小元是 1. 2
12、. R = (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4). (1) 1248361291234名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考(2)1000110011101111RM3. (1)?( (x) (x)+3 2x+32x+3. (2)?(x) (x)+3 (x+3)+3 x+6, (3)?(x
13、) (x)+3 x/4+3, (4)? (x) (x)/4 2x/4 = x/2,(5)?(?) ?+32x/4+3 x/2+3. 4. (1) P(a, f (a) P(b, f (b) = P(3, f (3)P(2, f (2) = P(3, 2)P(2,3) = 1 0 = 0. (2) x y P (y, x) = x (P (2, x) P (3, x) = (P (2, 2)P (3, 2)(P (2, 3)P (3, 3) = (0 1) (0 1) = 1 1 = 1. 5. (1) (2) 无 最 大元,最小元1,极大元8, 12; 极小元是1. (3) B无上界,无最小上
14、界。下界1, 2; 最大下界2. 6. G = (PQ)(Q(PR) = (PQ)(Q(PR) 2416812名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考= (P Q)(Q(PR) = (P Q)(QP)(QR) = (P Q R)(PQR)(PQR)(PQR)(P Q R) (PQ R) = (P Q R)(PQR)(PQR)(PQR)(P QR) = m3m4m5m6m7
15、 = (3, 4, 5, 6, 7). 7. G = (xP(x) yQ(y) xR(x) = (xP(x) yQ(y) xR(x) = (xP(x) yQ(y) xR(x) = (xP(x) y Q(y) zR(z) = xy z(P(x) Q(y) R(z) 9. (1) r(R)R IA(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d), s(R) RR1 (a,b), (b,a), (b,c), (c,b) (c,d), (d,c), t(R) RR2R3R4(a,a), (a,b), (a,c), (a,d), (b,a),
16、(b,b), (b,c), (b,d), (c,d);(2) 关系图 : 11. G (PQ)(PQ R) (PQ R)(PQR)(PQR) m6 m7m3 (3, 6, 7) H = (P (Q R) (Q(PR) (PQ)(QR) (PQR) (PQ R)(PQR)(PQR)(PQR)(P Q R) (PQ R)(PQ R)(PQR) m6 m3m7 (3, 6, 7) bacdr(R)bacds(R)bacdt(R)名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - -
17、第 6 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考G,H的主析取范式相同,所以G = H. 13. (1)0000100001000101RM1000000011000010SM(2)R?S(a, b),(c, d), RS(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d), R1(a, a),(c, a),(c, b),(d, c),S1?R1(b, a),(d, c). 四 证明题2. 设 A,B 为任意集合,证明:(A-B)-C = A-(BC). 3. (本题 10 分) 利用形式演绎法证明:AB,
18、 CB, C D蕴涵 AD。4. (本题 10 分)A, B为两个任意集合,求证:A(AB) = (A B)B . 1. 利用形式演绎法证明:PQ, RS, PR蕴涵QS。1. 证明: PQ, RS, PR 蕴涵QS(1) PRP (2) RPQ(1) (3) PQ P (4) RQQ(2)(3) (5) QRQ(4) (6) RSP (7) QSQ(5)(6) (8) QS Q(7) 2. 证明: (A-B)-C = (A B)C = A(BC) = A(BC) = A-(B C) 3. 证明: AB, CB, C D蕴涵 AD (1) A D(附加 ) (2) AB P 名师归纳总结 精品
19、学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 8 页 - - - - - - - - - WORD 整理版专业资料学习参考(3) B Q(1)(2) (4) CB P (5) B C Q(4) (6) C Q(3)(5) (7) C D P (8) D Q(6)(7) (9) A D D(1)(8) 所以 A B, CB, C D蕴涵 AD. 4.证明: A(AB) = A(AB) A(AB) (AA)(A B) (AB) (AB) AB 而 (A B)B = (A B) B = (A B)(B B) = (A B)= AB 所以: A(AB) = (A B)B. 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 8 页,共 8 页 - - - - - - - - -