《精选 - 2003 文档.doc》由会员分享,可在线阅读,更多相关《精选 - 2003 文档.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流精选 - 2003 文档.精品文档.二、填空题1 如图,在RtAOB中,AOB=90,AO=,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F点P从点A出发沿射线AO以每秒2个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动设运动的时间为t秒(1)当t= 时,PQEF;(2)若P、Q关于点O的对称点分别为P、Q,当线段PQ与线段EF有公共点时,t的取值范围是 2. 如图,在平面直角坐标系中,等腰OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,
2、连接OD,AB=,CBO=45,在直线BE上求点M,使BMC与ODC相似,则点M的坐标是 三、解答题1如图,点A(1,1+)在双曲线y=(x0)上(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由2如图1,ABC内接于O,BAC的平分线交O于点D,交BC于点E(BEEC),且BD=2过点D作DFBC,交AB的延长线于点F(1)求证:DF为O的切线;(2)若BAC=60,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长3已知抛物线C1:
3、y=ax2+bx+(a0)经过点A(1,0)和B(3,0)(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处设点F在抛物线C1上且在x轴的下方,若DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,ENEM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:tanENM的值如何变化?请说明理由;点M到达点C时,直接写出点P经过的路线长5如图,在四边形ABCD中,DCAB,DAAB,AD=4cm,DC=5cm,AB=8cm如果
4、点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当PQB为等腰三角形时,求t的值6如图,二次函数y=ax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求该二次函数的表达式;(2)过点A的直线ADBC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:在x轴上是否存在一点P
5、,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,DMN的面积最大,并求出这个最大值7两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内)其中,C=DEF=90,ABC=F=30,AC=DE=6cm现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动设三角板平移的距离为x(cm),两个三角板重叠
6、部分的面积为y(cm2)(1)当点C落在边EF上时,x= cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N直接写出在三角板平移过程中,点M与点N之间距离的最小值8如图,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m0,n0)(1)当m=1,n=4时,k= ,b= ;当m=2,n=3时,k= ,b= ;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点
7、E,连接AO,OE,ED当m=3,n3时,求的值(用含n的代数式表示);当四边形AOED为菱形时,m与n满足的关系式为 ;当四边形AOED为正方形时,m= ,n= 9在正方形ABCD中,对角线AC与BD交于点O;在RtPMN中,MPN=90(1)如图1,若点P与点O重合且PMAD、PNAB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的RtPMN绕点O顺时针旋转角度(045)如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;如图2,在旋转过程中,当DOM=15时,连接EF,若正方形的边长为2,请直接写出线段EF的长;如图3,旋转后
8、,若RtPMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF的数量关系14. 平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且DOQ=60,OQ=0D=3,OP=2,OA=AB=1让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为(060)发现:(1)当=0,即初始位置时,点P 直线AB上(填“在”或“不在”)求当是多少时,OQ经过点B(2)在OQ旋转过程中,简要说明是多少时,点P,A间的距离最小?并指出这个最小值
9、;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x0),用含x的代数式表示BN的长,并求x的取值范围探究:当半圆K与矩形ABCD的边相切时,求sin的值15. 如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DMFM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上
10、,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想17. 如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA8|+(OB6)2=0,ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由25. 如图,已知直线l与O相离OAl于点A,交O于点P,OA=5,AB与O相切于
11、点B,BP的延长线交直线l于点C(1)求证:AB=AC;(2)若PC=2,求O的半径26. 直线y=x6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EFAB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,CGF的面积为;(3)设四边形CDEF落在第一象限内的
12、图形面积为S,求S关于t的函数解析式,并求出S的最大值31. 综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=x2+x+4抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点(1)求A、B两点的坐标及直线l的函数表达式(2)将抛物线W沿x轴向右平移得到抛物线W,设抛物线W的对称轴与直线l交于点F,当ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W的函数表达式(3)如图2,连接AC,CB,将ACD沿x轴向右平移m个单位(0m5),得到ACD设AC交直线l于点M,CD交CB于点N,连接CC,MN求四边形CMN
13、C的面积(用含m的代数式表示)32. 将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0)过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A,设OM=m,折叠后的AMN与四边形OMNB重叠部分的面积为S()如图,当点A与顶点B重合时,求点M的坐标;()如图,当点A,落在第二象限时,AM与OB相交于点C,试用含m的式子表示S;()当S=时,求点M的坐标(直接写出结果即可)35. 如图(1),在RtACB中,ACB=90,AC=CB,DCE=45,试探究AD、DE、EB满足的等量关系探究发现小聪同学利用图
14、形变换,将CAD绕点C逆时针旋转90得到CBH,连接EH,由已知条件易得EBH=90,ECH=ECB+BCH=ECB+ACD=45根据“边角边”,可证CEH ,得EH=ED在RtHBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 实践运用(1)如图(2),在正方形ABCD中,AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求EAF的度数;(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长36. 如图1,ABC和AED都是等腰直角三角形,BA
15、C=EAD=90,点B在线段AE上,点C在线段AD上(1)请直接写出线段BE与线段CD的关系: ;(2)如图2,将图1中的ABC绕点A顺时针旋转角(0360),(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;当AC=ED时,探究在ABC旋转的过程中,是否存在这样的角,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角的度数;若不存在,请说明理由37. 如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90得到线段DE,过点E作直线lx轴于H,过点C作CFl于F(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:连接DF,求tanFDE的值;试探究在直线l上,是否存在点G,使EDG=45?若存在,请直接写出点G的坐标;若不存在,请说明理由