纯水制备原理.doc

上传人:豆**** 文档编号:24049636 上传时间:2022-07-03 格式:DOC 页数:16 大小:322.50KB
返回 下载 相关 举报
纯水制备原理.doc_第1页
第1页 / 共16页
纯水制备原理.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《纯水制备原理.doc》由会员分享,可在线阅读,更多相关《纯水制备原理.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流纯水制备原理.精品文档.一、反渗透原理当把相同体积的稀溶液和浓液分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。过程:水分自然渗透过程的反向过程物质:反渗透膜起源于最早使用于美国太空人将尿液回收为纯水使用。医学界还以反渗透法的技术用来洗肾(血液透析)。反渗透膜可以将重金属、农

2、药、细菌、病毒、杂质等彻底分离。整个工作原理均采用物理法,不添加任何杀菌剂和化学物质,所以不会发生化学变相。并且反渗透膜并不分离溶解氧,所以通过此法生产得出的纯水是活水,喝起来清甜可口。反渗透,英文为Reverse Osmosis,它所描绘的是一个自然界中水分自然渗透过程的反向过程。早在1950年美国科学家DR.S.Sourirajan有一回无意中发现海鸥在海上飞行时从海面啜起一大口海水,隔了几秒后吐出一小口的海水。他由此而产生疑问:陆地上由肺呼吸的动物是绝对无法饮用高盐份的海水,那为什么海鸥就可以饮用海水呢?这位科学家把海鸥带回了实验室,经过解剖发现在海鸥嗉囊位置有一层薄膜,该薄膜构造非常精

3、密。海鸥正是利用了这薄膜把海水过滤为可饮用的淡水,而含有杂质及高浓缩盐份的海水则吐出嘴外。这就是以后逆渗透法(Reverse Osmosis 简称 R.O)的基本理论架构。工作原理对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶质的薄膜称之为理想半透膜。当把相同体积的稀溶液(例如淡水)和浓溶液(例如盐水)分别置于半透膜的两侧时,稀溶液中的溶剂将自然穿过半透膜而自发地向浓溶液一侧流动,这一现象称为渗透。当渗透达到平衡时,浓溶液侧的液面会比稀溶液的液面高出一定高度,即形成一个压差,此压差即为渗透压。渗透压的大小取决于溶液的固有性质,即与浓溶液的种类、浓度和温度有关而与半透膜的

4、性质无关。若在浓溶液一侧施加一个大于渗透压的压力时,溶剂的流动方向将与原来的渗透方向相反,开始从浓溶液向稀溶液一侧流动,这一过程称为反渗透。 反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯与浓缩,其中最普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病毒、有机物及胶体等杂质去除,以获得高质量的纯净水。技术基础渗透膜早已存在于自然界中,但直到1748年,Nollet发现水能自然的扩散到装有酒精溶液的猪膀胱内,人类才发现了渗透现象。自然的渗透过程中,溶剂通过渗透膜从低浓度向高浓度

5、部分扩散;而反渗透是指在外界压力作用下,浓溶液中的溶剂透过膜向稀溶液中扩散,具有这种功能的半透膜称为反渗透膜,也称RO(Reverse Osmoses)膜。世界上从反渗透过程的传质机理及模型来说,主要有三种学说:1、溶解-扩散模型Lonsdale等人提出解释反渗透现象的溶解-扩散模型。他将反渗透的活性表面皮层看作为致密无孔的膜,并假设溶质和溶剂都能溶于均质的非多孔膜表面层内,各自在浓度或压力造成的化学势推动下扩散通过膜。溶解度的差异及溶质和溶剂在膜相中扩散性的差异影响着他们通过膜的能量大小。其具体过程分为:第一步,溶质和溶剂在膜的料液侧表面外吸附和溶解;第二步,溶质和溶剂之间没有相互作用,他们

6、在各自化学位差的推动下以分子扩散方式通过反渗透膜的活性层;第三步,溶质和溶剂在膜的透过液侧表面解吸。在以上溶质和溶剂透过膜的过程中,一般假设第一步、第三步进行的很快,此时透过速率取决于第二步,即溶质和溶剂在化学位差的推动下以分子扩散方式通过膜。由于膜的选择性,使气体混合物或液体混合物得以分离。而物质的渗透能力,不仅取决于扩散系数,并且决定于其在膜中的溶解度。溶剂和溶质在膜中的扩散服从Fick定律,这种模型认为溶剂和溶质都可能溶于膜表面,因此物质的渗透能力不仅取决于扩散系数,而且取决于其在膜中的溶解度,溶质的扩散系数比水分子的扩散系数要小得多,因而透过膜的水分子数量就比通过扩散而透过去的溶质数量

7、更多。2、 优先吸附-毛细孔流理论当液体中溶有不同种类物质时,其表面张力将发生不同的变化。例如水中溶有醇、酸、醛、脂等有机物质,可使其表面张力减小,但溶入某些无机盐类,反而使其表面张力稍有增加,这是因为溶质的分散是不均匀的,即溶质在溶液表面层中的浓度和溶液内部浓度不同,这就是溶液的表面吸附现象。当水溶液与高分子多孔膜接触时,若膜的化学性质使膜对溶质负吸附,对水是优先的正吸附,则在膜与溶液界面上将形成一层被膜吸附的一定厚度的纯水层。它在外压作用下,将通过膜表面的毛细孔,从而可获取纯水。3、 氢键理论在醋酸纤维素中,由于氢键和范德华力的作用,膜中存在晶相区域和非晶相区域两部分。大分子之间存在牢固结

8、合并平行排列的为晶相区域,而大分子之间完全无序的为非晶相区域,水和溶质不能进入晶相区域。在接近醋酸纤维素分子的地方,水与醋酸纤维素羰基上的氧原子会形成氢键并构成所谓的结合水。当醋酸纤维素吸附了第一层水分子后,会引起水分子熵值的极大下降,形成类似于冰的结构。在非晶相区域较大的孔空间里,结合水的占有率很低,在孔的中央存在普通结构的水,不能与醋酸纤维素膜形成氢键的离子或分子则进入结合水,并以有序扩散方式迁移,通过不断的改变和醋酸纤维素形成氢键的位置来通过膜。在压力作用下,溶液中的水分子和醋酸纤维素的活化点-羰基上的氧原子形成氢键,而原来水分子形成的氢键被断开,水分子解离出来并随之移到下一个活化点并形

9、成新的氢键,于是通过一连串的氢键形成与断开,使水分子离开膜表面的致密活性层而进入膜的多孔层。由于多孔层含有大量的毛细管水,水分子能够畅通流出膜外。主要指标1、脱盐率和透盐率脱盐率-通过反渗透膜从系统进水中去除可溶性杂质浓度的百分比。透盐率-进水中可溶性杂质透过膜的百分比。脱盐率=(1产水含盐量/进水含盐量)100%透盐率=100%脱盐率膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱盐率主要由物质的结构和分子量决定,对高价离子及复杂单价离子的脱盐率可以超过99%,对单价离子如:钠离子、钾离子、氯离

10、子的脱盐率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可过到98%,但对分子量小于100的有机物脱除率较低。2、产水量(水通量)产水量(水通量)-指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。渗透流率-渗透流率也是表示反渗透膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。3、回收率回收率-指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。回收率=(产水流量/进水流量)100%影响因素1、进水压力

11、对反渗透膜的影响进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。2、进水温度对反渗透膜的影响反渗透膜产水电导对进水水温的变化十分敏感,随着水温的增加水对通量也线性的增加,进水水温每升高1,产水量就提升2.5%-3.0%;(以25为标准)。3、进水PH值对反渗透膜的影响进水PH值对产水量几乎没有影响,面对脱盐率有较大影响。PH值在7.5-8.5之间,脱盐率

12、达到最高。4、进水盐浓度对反渗透膜的影响渗透压是水中所含盐分或有机物浓度的函数,进水含盐量越高,浓度差也越大,透盐率上升,从而导致脱盐率下降。应用范围单级反渗透适合电导率小于500S/cm的水质出水电导率 1-10S/cm工艺流程:通过原水箱收集原水,采用了增压泵进行水压辅助,原水通过增压水泵输送到石英砂过滤器、活性碳过滤器和阳离子软化器进行初步的水处理,经过预处理的水在经过精密过滤器(又称保安过滤器)后进入反渗透主机,进行反渗透处理,反渗透主机是主要的纯净水处理系统,处理完成的水通过水汽混合器进行输送,纯净水处理完成后,通过专业的灌装设备进行灌装,称为大桶纯净水或者小瓶纯净水。二级反渗透一级

13、反渗透:就是原水原水加压泵多介质过滤器活性炭过滤器软水器精密过滤器一级反渗透机中间水箱中间水泵EDI系统纯化水箱纯水泵紫外线杀菌器微孔过滤器用水点。双级反渗透就是第一级反渗透的透过水经调整PH值后,再由第二级高压泵送进第二级反渗透系统处理,从而获得透过水的过程。 一级反渗透的系统脱盐率99.5%。这样就能使含盐量在1000ppm以下的原水,不经过离子交换直接处理到符合GB17323-1998瓶装饮用纯净水标准中的理化指标。 说简单了,一级就是经过一次膜处理,出来的是纯水。双级就是经过两次膜处理,出来的是超纯水反渗透膜方法/步骤1.用泵将干净、无游离氯的反渗透产品水从清洗箱(或相应水源)打入压力

14、容器中并排放几分钟。2.用干净的产品水在清洗箱中配制清洗液。3.将清洗液在压力容器中循环1小时或预先设定的时间。4.清洗完成以后,排净清洗箱并进行冲洗,然后向清洗箱中充满干净的产品水以备下一步冲洗。5.用泵将干净、无游离氯的产品水从清洗箱(或相应水源)打入压力容器中并排放几分钟。6.在冲洗反渗透系统后,在产品水排放阀打开状态下运行反渗透系统,直到产品水清洁、无泡沫或无清洗剂(通常1530分钟)。二、电渗析法(EDR)电渗析,是一种以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作。对象:溶质粒子利用材质:半透膜的选择透过性简介电渗析过程是电化学过程和渗析扩散过程

15、的结合;在外加直流电场的驱动下,利用离子交换膜的选择透过性(即阳离子可以透过阳离子交换膜,阴离子可以透过阴离子交换膜),阴、阳离子分别向阳极和阴极移动。离子迁移过程中,若膜的固定电荷与离子的电荷相反,则离子可以通过;如果它们的电荷相同,则离子被排斥,从而实现溶液淡化、浓缩、精制或纯化等目的。电渗析与近年引进的另一种膜分离技术反渗透相比,它的价格便宜,但脱盐率低。当前国产离子交换膜质量亦很稳定,运行管理也很方便。原理电渗析使用的半渗透膜其实是一种离子交换膜。这种离子交换膜按离子的电荷性质可分为阳离子交换膜(阳膜)和阴离子交换膜(阴膜)两种。在电解质水溶液中,阳膜允许阳离子透过而排斥阻挡阴离子,阴

16、膜允许阴离子透过而排斥阻挡阳离子,这就是离子交换膜的选择透过性。在电渗析过程中,离子交换膜不像离子交换树脂那样与水溶液中的某种离子发生交换,而只是对不同电性的离子起到选择性透过作用,即离子交换膜不需再生。电渗析工艺的电极和膜组成的隔室称为极室,其中发生的电化学反应与普通的电极反应相同。阳极室内发生氧化反应,阳极水呈酸性,阳极本身容易被腐蚀。阴极室内发生还原反应,阴极水呈碱性,阴极上容易结垢。实际应用电渗析是膜分离过程中较为成熟的一项技术,已广泛地应用于苦咸水脱盐,是世界上某些地区生产淡水的主要方法。由于新开发的荷电膜具有更高的选择性、更低的膜电阻、更好的热稳定性相化学稳定性以及更高的机械强度、

17、使电渗析过程不仅限于应用在脱盐方面,而且在食品、医药及化学工业中,电渗析过程还有许多其他的工业应用,如工业废水的处理,主要包括从酸液清洗金属表面所形成的废液中回收酸和金属;从电镀废水中回收重金属离子;从合成纤维废水中回收硫酸盐;从纸浆废液中回收亚硫酸盐等。用于食品工业中,如牛奶脱盐制婴儿奶粉;用于化学工业分离离子性物质与非离子性物质;在临床治疗中电渗析可作为人工肾使用等。自动控制频繁倒极电渗析(EDR),运行管理更加方便。原水利用率可达80%,一般原水回收率 在45-70%之间。电渗析主要用于水的初级脱盐,脱盐率在45-90%之间。它广泛被用于海水与苦咸水淡化;制备纯水时的初级脱盐以及锅炉、动

18、力设备给水的脱盐软化等。实质上,电渗析可以说是一种除盐技术,因为各种不同的水(包括天然水、自来水、工业废水)中都有一定量的盐分,而组成这些盐的阴、阳离子在直流电场的作用下会分别向相反方向的电极移动。如果在一个电渗析器中插入阴、阳离子交换膜各一个,由于离子交换膜具有选择透过性,即阳离子交换膜只允许阳离子自由通过,阴离子交换膜只允许阴离子以通过,这样在两个膜的中间隔室中,盐的浓度就会因为离子的定向迁移而降低,而靠近电极的两个隔室则分别为阴、阳离子的浓缩室,最后在中间的淡化室内达到脱盐的目的。实际应用中,一台电渗析器并非由一对阴、阳离子交换膜所组成(因为这样做效率很低),而是采用一百对,甚至几百对交

19、换膜,因而大大提高效率。应用范围目前电渗析器应用范围广泛,它在水的淡化除盐、海水浓缩制盐精制乳制品,果汁脱酸精和提纯,制取化工产品等方面,还可以用于食品,轻工等行业制取纯水、电子、医药等工业制取高纯水的前处理。锅炉给水的初级软化脱盐,将苦咸水淡化为饮用水。电渗析器适用于电子、医药、化工、火力发电、食品、啤酒、饮料、印染及涂装等行业的给水处理。也可用于物料的浓缩、提纯、分离等物理化学过程。电渗析还可以用于废水、废液的处理与贵重金属的回收,如从电镀废液中回收镍基本性能(1)操作压力 0.53.0kg /cm2 左右(2)操作电压、电流100250V,13A(3)本体耗电量每吨淡水约0.22.0度方

20、法特点可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用;电渗析可以用于蔗糖等非电解质的提纯,以除去其中的电解质;在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧化还原效率高。四、在电渗析过程中,也进行以下次要过程同名离子的迁移,离子交换膜的选择透过性往往不可能是百分之百的,因此总会有少量的相反离子透过交换膜;离子的浓差扩散,由于浓缩室和淡化室中的溶液中存在着浓度差,总会有少量的离子由浓缩室向淡化室扩散迁移,从而降低了渗析效率;水的渗透,尽管交换膜是不允许溶剂分子透过的,但是由于淡化室与浓缩室之间存在浓度差,就会使部分溶剂分子(水)向浓缩室渗透;水的电渗析,由于离子的水合作用和形成

21、双电层,在直流电场作用下,水分子也可从淡化室向浓缩室迁移;水的极化电离,有时由于工作条件不良,会强迫水电离为氢离子和氢氧根离子,它们可透过交换膜进入浓缩室;水的压渗,由于浓缩室和淡化室之间存在流体压力的差别,迫使水分子由压力大的一侧向压力小的一侧渗透。显然,这些次要过程对电渗析是不利因素,但是它们都可以通过改变操作条件予以避免或控制。在外加直流电场作用下,利用离子交换膜的透过性(即阳膜只允许阳离子透过,阴膜只允许阴离子透过),使水中的阴、阳离子作定向迁移,从而达到水中的离子与水分离的一种物理化学过程。原理是:在阴极与阳极之间,放置着若干交替排列的阳膜与阴膜,让水通过两膜及两膜与两极之间所形成的

22、隔室,在两端电极接通直通电源后,水中阴、阳离子分别向阳极、阴极方向迁移,由于阳膜、阴膜的选择透过性,就形成了交替排列的离子浓度减少的淡室和离子浓度增加的浓室。与此同时,在两电极上也发生着氧化还原反应,即电极反应,其结果是使阴极室因溶液呈碱性而结垢,阳极室因溶液呈酸性而腐蚀。因此,在电渗析过程中,电能的消耗主要用来克服电流通过溶液、膜时所受到的阻力及电极反应。1.1电渗析器的构造电渗析器由膜堆、极区和压紧装置三部分构成。(1)膜块:是由相当数量膜对组装而成。膜对:是由一张阳离子交换膜,一张隔板甲(或乙);一张阴膜,一张隔板乙(或甲)组成。离子交换膜:是电渗析器关键部件,其性能影响电渗析器的离子迁

23、移效率、能耗、抗污染能力和使用期限等。其中膜的分类:按膜结构分为:异相膜、均相膜和半均相膜;按膜上活性基团不同分为:阳膜、阴膜和特种膜;按膜材料不同分为:有机膜和无机膜。隔板:分浓、淡水隔板,交替放阴阳膜之间,使阴膜和阳膜之间保持一定间隔,隔板平面水流,垂直隔板平面电流。隔板厚离0.9毫米。(2)极区包括电极、极框和导水板。电极:为连接电源所用。极框:放置电极和膜之间,膜帖到电极上去,起支撑作用。(3)压紧装置:是用来压紧电渗析器,使膜堆、电极等部件形成一个整体,不致漏水。1.2、组装方式电渗析器组装是用“级”和“段”来表示,一对电极之间膜堆称为“一级”。水流同向每一个膜称为“一段”。增加段数

24、就等于增加脱盐流程,也就是提高脱盐效率,增加膜对数,可提高水处理量。电渗析器组装方式可淡水产量和出水水质不同要求而调整,一般有以下几种组装形式:一级一段;一级多段;多段一段;多级多段。2应用案例2.1电渗析在反渗透浓水回用中的应用随着膜技术的快速发展,反渗透得到越来越广泛的应用,但是反渗透制纯水生产过程中会产生大量的浓水,如果浓水得不到妥善处理而直接排放,必然会造成资源浪费及环境污染。我公司采用电渗析工艺对反渗透浓水进行回收再利用,取得了良好的经济效益和社会效益。本系统工艺主要采用原反渗透浓水进入倒极电驱动膜分离器系统+二级反渗透+EDI系统。回用水降到电导率1000S/cm后,进入反渗透系统

25、,达到电导率5S/cm以内,反渗透产出淡水进入EDI系统,反渗透产出浓水进入倒极电渗析系统。电渗析产出的浓水进入浓缩水箱。EDI产出浓水进入二级反渗透系统,EDI产出淡水达到15M,进入产水罐。采用本工艺,既为企业解决了电厂锅炉补给用水,又可使企业废水达到零排放。2.2电渗析技术在高盐高COD污水中的应用在医药中间体及化工厂生产过程中产出大量含有机物的高盐污水,该污水由于含盐量太高,很难进行生化处理达到排放或回用标准。使用电渗析可以使盐分下降至可生化标准,淡水进入生化。电渗析产出的含盐污水经过电渗析浓缩至12%-15%以上,进入蒸发或MVR系统,最终达到零排放的目的,既为企业解决了高盐废水排放

26、难题,又可以使水资源得到回收利用,节约了资源,提高了企业的经济效益。三、 离子交换树脂系统离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂单独或按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床系统,而混床系统又通常是用在反渗透等水处理工艺之后用来制取超纯水,高纯水的终端工艺,它是用来制备超纯水、高纯水不可替代的手段之一。其出水电导率可低于0.2S/cm以下,出水电阻率达到5M.cm以上,根据不同的水质及使用要求,出水电阻率可控制在518M.cm之间。被广泛应用在电子、离子交换树脂系统、锅炉补给水水等工及医药用超纯

27、业超纯水、高纯水的制备上。系统:离子交换阴床原理: 反渗透工作原理采用离子交换方法,可以把水中呈离子态的阳离子、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:1、阳离子交换树脂:R-H + Na= R-Na + H2、阴离子交换树脂:R-OH + Cl= R-Cl + OH阳、阴离子交换树脂总的反应式即可写成: RH+ROH+NaCl-RNa+RCl+H2O由此可看出,水中的NaCl已分别被树脂上的H和OH所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。主要工艺去离子水的工艺大致可分为四种:第一种:采用阳阴离子交换树脂取得的去离子水,一般通

28、过之后,出水电导率可降到10us/cm以下,再经过混床就可以达到0.2s/cm以下了。但是这种方法做出来的水成本较高,而且颗粒杂质太多,达不到理想的要求。第二种:预处理(即砂碳过滤器+精密过滤器)+反渗透+混床工艺 这种方法是目前采用最多的,因为反渗透投资成本也不算高,可以去除90%以上的水中离子,剩下的离子再通过混床交换除去,这样可使出水电导率:0.2左右。这样是目前最流行的方法。第三种:采用两级反渗透方式其流程如下:自来水多介质过滤器活性炭过滤器软化水器中间水箱低压泵精密过滤器一级反渗透PH调节混合器二级反渗透(反渗透膜表面带正电荷)纯水箱纯水泵微孔过滤器用水点第四种:前处理与第二种方法一

29、样使用反渗透,只是后面使用的混床采用EDI连续除盐膜块代替,这样就不用酸碱再生树脂,而是用电再生。这就彻底使整个过程无污染了,经过处理后的水质可达到:15M以上。但这这种方法的前期投资比较多,运行成本低。根据各公司的情况做适当的投资。最好不过了。 其流程如下原水多介质过滤器活性炭过滤器软化水器中间水箱低压泵PH值调节系统高效混合器精密过滤器高效反渗透中间水箱EDI水泵EDI系统微孔过滤器用水点系统的预处理先用清水对树脂进行冲洗,然后用45%的HCl和NaOH在交换柱中依次交替浸泡24小时,在酸碱之间用大量清水淋洗至出水接近中性,如此重复23次,每次酸碱用量为树脂体积的2倍。最后一次处理应用45

30、%的HCl溶液进行,放尽酸液,用清水淋洗至中性即可待用。应用领域离子交换设备是传统的去离子水设备,它的产水水质稳定,造价相对较低。在以往的电厂锅炉补给水都是采用阳床+阴床+混床处理工艺。2010来,随着反渗透、EDI等工艺的发展,离子交换设备操作复杂,不容易实现自动化,浪费酸碱,运行成本高等缺点更加突出,更多的应用于反渗透的深度处理。小型的离子交换设备常采用有机玻璃交换柱,有利于观察树脂运行情况。如混合离子交换器再生分层是否充分,阳离子是否中毒等,树脂损耗情况等。大型的离子交换设备则采用碳钢内衬环氧树脂或衬胶,中间预留可视装置,以便于离子再生时在线观测再生液水位状况。特点1、工业超纯水处理工艺

31、,是目前工业用超纯水的制备上应用最多的一种工艺之一。2、食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。3、制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。4、合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。5、电镀废液中的金属离子,回收电影制片废液里的有用物质等。6、湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属介绍离子交换树脂常用于原水处理的有钠型阳离子交换树脂和阴离子交换树脂,全名称由分类名称、骨架(或基因)名称、基本名称构成。根据

32、树脂的酸碱性分,属酸性的在名称前加阳,强酸性阳离子树脂与NaCl作用,转变为钠型树脂使用,就叫做钠型阳离子交换树脂。属碱性的在名称前加阴。基本类型1、 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸

33、进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。2、 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH514)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。3、 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的离解性很强,在

34、不同pH下都能正常工作。它用强碱(如NaOH)进行再生。4、 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH19)下工作。它可用Na2CO3、NH4OH进行再生。注:不论强碱性还是弱碱性树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的离子交换容量,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或

35、 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有总交换容量、工作交换容量和 再生交换容量等三种表示方式。1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。通常,再生交换容量为总交换容量的5090%(一般控制7080%),而工作交换容量为再生交换容量的3090

36、%(对再生树脂而言),后一比率亦称为树脂的利用率。在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。应用领域1)水处理水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于

37、水中的各种阴阳离子的去除。离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。2)食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。3)制药行业制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。2010年来还在中药提成等方面有所研究。4)合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。

38、用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。5)环境保护离子交换树脂已应用在许多非常受关注的环境保护问题上。许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。6)湿法冶金及其他离子交换树脂、阳离子交换树脂、阴离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。 四、电流去离子法(EDI)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁