《高考理科数学能力提升训练(二十)圆锥曲线综合问题.docx》由会员分享,可在线阅读,更多相关《高考理科数学能力提升训练(二十)圆锥曲线综合问题.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、能力升级练(二十)圆锥曲线综合问题(2)1.(2019广西南宁市第三中学、柳州市高级中学联考)如图,椭圆C:x2a2+y2b2=1(ab0)的顶点为A1,A2,B1,B2,左右焦点分别为F1,F2,|A1B1|=3,SA1B1A2B2=2SB1F1B2F2.(1)求椭圆C的方程;(2)过右焦点F2的直线l与椭圆C相交于A,B两点,试探究在x轴上是否存在定点Q,使得QAQB为定值?若存在,求出点Q的坐标,若不存在,请说明理由.解(1)由|A1B1|=3,得a2+b2=3.由SA1B1A2B2=2SB1F1B2F2,得122a2b=222c2b,即a=2c,又a2-b2=c2,由,得a2=2,b2
2、=1,椭圆C的方程为x22+y2=1.(2)当直线l的斜率不为0或不存在时,设A(x1,y1),B(x2,y2),Q(x0,0),直线l的方程为x=my+1,由x=my+1,x22+y2=1,得(m2+2)y2+2my-1=0,y1+y2=-2mm2+2,y1y2=-1m2+2.QAQB=(x1-x0)(x2-x0)+y1y2=(my1+1)(my2+1)-x0(my1+my2+2)+x02+y1y2=(m2+1)y1y2+m(y1+y2)(1-x0)+x02-2x0+1=(m2+1)-1m2+2+m-2mm2+2(1-x0)+x02-2x0+1=(2x0-3)m2-1m2+2+x02-2x0
3、+1,由2x0-31=-12,得x0=54,故此时点Q54,0,QAQB=-716.当直线l的斜率为0时,QAQB=-542-(2)2=-716.综上所述,在x轴上存在定点Q54,0,使得QAQB为定值.2.如图,A(-3m,m),B(3n,n)两点分别在射线OS,OT上移动,且OAOB=-12,O为坐标原点,动点P满足OP=OA+OB.(1)求点P的轨迹C的方程.(2)设Qx0,12,过Q作(1)中曲线C的两条切线,切点分别为M,N,求证:直线MN过定点;若OMON=-7,求x0的值.解(1)由已知得OAOB=-3mn+mn=-12,即mn=14.设点P坐标为(x,y)(y0),由OP=OA
4、+OB,得(x,y)=(-3m,m)+(3n,n)=(3(n-m),m+n).x=3(n-m),y=m+n,消去m,n,可得y2-x23=1(y0),轨迹C的方程为y2-x23=1(y0).(2)由(1)知,y=1+x23,即y=x31+x23.设M(x1,y1),N(x2,y2),则kQM=x131+x123=x13y1,kQN=x231+x223=x23y2.lQM:y=x13y1(x-x1)+y1,即lQM:x1x-3y1y+3=0.Q在直线QM上,x0x1-32y1+3=0,同理可得x0x2-32y2+3=0.由可知,lMN:x0x-32y+3=0,直线MN过定点(0,2).由以上可知
5、,设直线MN的方程为y=kx+2,易知k=2x03,且|k|0)的焦点为F,M(-2,y0)是抛物线C上一点,且|MF|=2.(1)求抛物线C的方程;(2)过点F的直线与抛物线C相交于A,B两点,分别过A,B两点作抛物线C的切线l1,l2,两条切线相交于点P,点P关于直线AB的对称点Q,判断四边形PAQB是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.解(1)根据题意知,4=2py0,因为|MF|=2,所以y0+p2=2.联立解得y0=1,p=2.所以抛物线C的方程为x2=4y.(2)四边形PAQB存在外接圆.设直线AB方程为y=kx+1,代入x2=4y中,得x2-4
6、kx-4=0,设点A(x1,y1),B(x2,y2),则=16k2+160,且x1+x2=4k,x1x2=-4,所以|AB|=1+k2|x1-x2|=4(k2+1),因为C:x2=4y,即y=x24,所以y=x2.因此,切线l1的斜率为k1=x12,切线l2的斜率为k2=x22,由于k1k2=x1x24=-1,所以PAPB,即PAB是直角三角形,所以PAB的外接圆的圆心为线段AB的中点,线段AB是圆的直径,所以点Q一定在PAB的外接圆上,即四边形PAQB存在外接圆.又因为|AB|=4(k2+1),所以当k=0时,线段AB最短,最短长度为4,此时圆的面积最小,最小面积为4.4.已知椭圆G的离心率
7、为22,其短轴两端点为A(0,1),B(0,-1).(1)求椭圆G的方程;(2)若C,D是椭圆G上关于y轴对称的两个不同点,直线AC,BD与x轴分别交于点M,N.判断以MN为直径的圆是否过点A,并说明理由.解(1)由已知可设椭圆G的方程为x2a2+y21=1(a1).由e=22,可得e2=a2-1a2=12,解得a2=2,所以椭圆的标准方程为x22+y2=1.(2)方法一:设C(x0,y0),且x00,则D(-x0,y0).因为A(0,1),B(0,-1),所以直线AC的方程为y=y0-1x0x+1.令y=0,得xM=-x0y0-1,所以M-x0y0-1,0.同理,直线BD的方程为y=y0+1
8、-x0x-1,求得N-x0y0+1,0.AM=x01-y0,-1,AN=-x01+y0,-1,所以AMAN=-x021-y02+1,由C(x0,y0)在椭圆G:x22+y2=1上,所以x02=2(1-y02),所以AMAN=-10,所以MAN90,所以以线段MN为直径的圆不过点A.方法二:因为C,D关于y轴对称,且B在y轴上,所以CBA=DBA.因为N在x轴上,又A(0,1),B(0,-1)关于x轴对称,所以NAB=NBA=CBA,所以BCAN,所以NAC=180-ACB,设C(x0,y0),且x00,则x02=2(1-y02).因为CACB=(-x0,1-y0)(-x0,-1-y0)=x02+(y02-1)=12x020,所以ACB90,所以NAC90,所以以线段 MN为直径的圆不过点A.