《初中数学--培优专题12-全等三角形及其应用(含答案)[1].doc》由会员分享,可在线阅读,更多相关《初中数学--培优专题12-全等三角形及其应用(含答案)[1].doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date初中数学-培优专题12-全等三角形及其应用(含答案)1初中数学-培优专题12-全等三角形及其应用(含答案)1全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2. 全等三角形的表示方法:若ABC和ABC是全等的三角形,记作 “ABCABC
2、其中,“”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找 :如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中
3、一个是由另一个经过下列各种运动而形成的。翻折 如图(1),DBOCDEOD,DBOC可以看成是由DEOD沿直线AO翻折180得到的;旋转 如图(2),DCODDBOA,DCOD可以看成是由DBOA绕着点O旋转180得到的; 平移 如图(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移动而得到的。5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2) 推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。全
4、等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用(1) 证明线段(或角)相等 例1:如图,已知AD=AE,AB=AC.求证:BF=FC证明:在ACD和ABE中, ACDABE (SAS) B=C(全等三角形对应角相等)又 AD=AE,AB=AC. ABAD=ACAE 即 BD=CE在DBF和ECF中 DBFECF (AAS) BF=FC (全等三角形对应边相等)(2)证明线段平行例2:已知:如图,DEAC,BFAC,垂足分别为E、
5、F,DE=BF,AF=CE.求证:ABCD证明: DEAC,BFAC (已知) DECBFA=90 (垂直的定义)在ABF与CDE中, ABFCDE(SAS) CA (全等三角形对应角相等) ABCD (内错角相等,两直线平行)(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在 ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE证明:取CD中点F,连接BF BF=AC,且BFAC (三角形中位线定理) ACB2 (两直线平行内错角相等)又 AB=AC ACB3 (等边对等角) 32在CEB与CFB中, C
6、EBCFB (SAS) CE=CF=CD (全等三角形对应边相等)即CD=2CE ()加倍法 证明:延长CE到F,使EF=CE,连BF.在AEC与BEF中,AECBEF (SAS) AC=BF, 43 (全等三角形对应边、对应角相等) BFAC (内错角相等两直线平行) ACB+CBF=180o, ABC+CBD=180o,又AB=AC ACB=ABCCBF=CBD (等角的补角相等)在CFB与CDB中, CFBCDB (SAS) CF=CD即CD=2CE (4)证明线段相互垂直例4:已知:如图,A、D、B三点在同一条直线上,ADC、BDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?
7、证明你的结论。证明:延长AO交BC于E,在ADO和CDB中 ADOCDB (SAS) AO=BC, OAD=BCD(全等三角形对应边、对应角相等) AODCOE (对顶角相等) COE+OCE=90o AOBC5、中考点拨:例1如图,在ABC中,ABAC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DFDE,连结FC求证:FA证明:ABAC,ACBB,EBED,ACBEDBEDACBEDABEEABDCD又DEDF,BDECDFBDECDF,BEDFFA例2 如图,已知 ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、D
8、E.求证:EC=ED证明:过D点作DFAC交BE于F点 ABC为等边三角形 BFD为等边三角形 BF=BD=FD AE=BD AE=BF=FD AEAF=BFAF 即 EF=AB EF=AC在 ACE和DFE中, AECFED(SAS) EC=ED(全等三角形对应边相等)题型展示:例1 如图,ABC中,C2B,12。求证:ABACCD证明:在AB上截取AEAC,连结DE AEAC,12,ADAD, AEDACD, DEDC,AEDC AEDBEDB,C2B, 2BBEDB即 BEDB EBED,即EDDC, ABACDC【实战模拟】1. 下列判断正确的是( )(A)有两边和其中一边的对角对应相
9、等的两个三角形全等(B)有两边对应相等,且有一角为30的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2. 已知:如图,CDAB于点D,BEAC于点E,BE、CD交于点O,且AO平分BAC求证:OBOC3. 如图,已知C为线段AB上的一点,DACM和DCBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:DCEF是等边三角形。4.如图,在ABC中,AD为BC边上的中线求证:AD(AB+AC) 5. 如图,在等腰RtABC中,C90,D是斜边上AB上任一点,AECD于E,BFCD交CD的延长线于F,CHAB于H点,交AE
10、于G求证:BDCG【试题答案】1. D2.证明: AO平分ODB,CDAB于点D,BEAC于点E,BE、CE交于点O, ODOE,ODBOEC90, BODCOE。 BODCOE(ASA)OBOC3. 分析 由ACM=BCN=60,知ECF=60,欲证DCEF是等边三角形,只要证明DCEF是等腰三角形。先证DCANDMCB,得1=2.再证DCFNDCEB,即可推得DCEF是等边三角形的结论。证明:在DCAN和DMCB,AC=MC,CN=CB,CAN=MCB=120,DACNDMCB中, FCB和DCEB中,FCN=ECB=60,1=2,CN=CB,DCFNDCEB,CF=CE,又ECF=60,
11、 DCEF是等边三角形.4. 分析: 关于线段不等的问题,一般利用在同一个三角形中三边关系来讨论,由于AB、AC、AD不在同一个三角形,应设法将这三条线段转化在同一个三角形中,也就是将线段相等地转化,而转化的通常方法利用三角形全等来完成,注意AD是BC边上的中线,延长AD至E,使DEAD,即可得到ACDEBD证明:延长AD到E,使DEAD,连结BE在DACD与DEBD中 DACDDEBD(SAS) ACEB(全等三角形对应边相等)在DABE中,ABEBAE(三角形两边之和大于第三边) ABAC2AD(等量代换) 说明:一般在有中点的条件时,考虑延长中线来构造全等三角形。5.分析:由于BD与CG
12、分别在两个三角形中,欲证BD与CG相等,设法证CGEBDF。由于全等条件不充分,可先证AECCFB证明:在RtAEC与RtCFB中,ACCB,AECD于E,BFC交CD的延长线于FAECCFB90又ACB90 CAE90ACEBCF RtAECRtCFBCEBF在RtBFD与RtCEG中,FGEC90,CEBF,由FBD90FDB90CDHECG, RtBFDRtCEG BDCG全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2. 全等三角形的表示方法:若ABC
13、和ABC是全等的三角形,记作 “ABCABC其中,“”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找 :如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角
14、形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。翻折 如图(1),DBOCDEOD,DBOC可以看成是由DEOD沿直线AO翻折180得到的; 旋转 如图(2),DCODDBOA,DCOD可以看成是由DBOA绕着点O旋转180得到的; 平移 如图(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移动而得到的。 5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2) 推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AA
15、A;b :有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用(2) 证明线段(或角)相等 例1:如图,已知AD=AE,AB=AC.求证:BF=FC (2)证明线段平行例2:已知:如图,DEAC,BFAC,垂足分别为E、F,DE=BF,AF=CE.求证:ABCD (3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在 ABC中,AB=AC,延长AB到D,使BD=A
16、B,取AB的中点E,连接CD和CE. 求证:CD=2CE (4)证明线段相互垂直 例4:已知:如图,A、D、B三点在同一条直线上,ADC、BDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。 5、中考点拨:例1如图,在ABC中,ABAC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DFDE,连结FC求证:FA 例2 如图,已知 ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED 题型展示:例1 如图,ABC中,C2B,12。求证:ABACCD 【实战模拟】1. 下列判断正确的是(
17、 )(A)有两边和其中一边的对角对应相等的两个三角形全等(B)有两边对应相等,且有一角为30的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2. 已知:如图,CDAB于点D,BEAC于点E,BE、CD交于点O,且AO平分BAC求证:OBOC3. 如图,已知C为线段AB上的一点,DACM和DCBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:DCEF是等边三角形。4.如图,在ABC中,AD为BC边上的中线求证:AD(AB+AC) 5. 如图,在等腰RtABC中,C90,D是斜边上AB上任一点,AECD于E,BFCD交CD的延长线于F,CHAB于H点,交AE于G求证:BDCG-