《山东省德州市中考数学试卷(word解析版).doc》由会员分享,可在线阅读,更多相关《山东省德州市中考数学试卷(word解析版).doc(64页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date山东省德州市2017年中考数学试卷(word解析版)山东省德州市2017年中考数学试卷(word解析版)2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1(3分)(2017衢州)2的倒数是()ABC2D2【分析】根据倒数的定义即可求解【解答】解:2的倒数是故选:A【点评】主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们
2、就称这两个数互为倒数2(3分)(2017德州)下列图形中,既是轴对称图形又是中心对称图形的是()【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确故选D【点评】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合 3(3分)(2017德州)2016年,我市“全面改薄”和解决大班额
3、工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A4.77105B47.7105C4.77106D0.477106【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:477万用科学记数法表示4.77106.故选:C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(3分)(
4、2017德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()【分析】俯视图是从物体的上面看,所得到的图形【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力5(3分)(2017德州)下列运算正确的是()A(a2)m=a2mB(2a)3=2a3Ca3a5=a15Da3a5=a2【分析】根据整式的运算法则即可求出答案【解答】解:(B)原式=8a3,故B不正确;(C)原式=a2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题
5、的关键是熟练运用整式的运算法则,本题属于基础题型6(3分)(2017德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下: 尺码3940414243平均每天销售数量/件1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A平均数B方差C众数D中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量销量大的尺码就是这组数据的众数【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数故选:C【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差
6、的意义7(3分)(2017德州)下列函数中,对于任意实数x1,x2,当x1x2时,满足y1y2的是()Ay=3x+2By=2x+1Cy=2x2+1Dy=【分析】A、由k=3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x0时,y随x值的增大而增大,当x0时,y随x值的增大而减小;D、由k=1可得知:当x0时,y随x值的增大而增大,当x0时,y随x值的增大而增大此题得解【解答】解:A、y=3x+2中k=3,y随x值的增大而减小,A选项符合题意;B、y=2x+1中k=2,y随x值的增大而增大,B选项不符合题意;C、y=2x2+1中a=2,当x0时,y随x
7、值的增大而增大,当x0时,y随x值的增大而减小,C选项不符合题意;D、y=中k=1,当x0时,y随x值的增大而增大,当x0时,y随x值的增大而增大,D选项不符合题意故选A【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键 8(3分)(2017德州)不等式组的解集是()Ax3B3x4C3x2Dx4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】解:解不等式2x+93,得:x3,解不等式x1,得:x4,不等式组的解集为3x
8、4,故选:B【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9(3分)(2017德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示下面给出的四个公式中,表明这是一个短而硬的弹簧的是()AL=10+0.5PBL=10+5PCL=80+0.5PDL=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论【解答】解:10
9、80,0.55,A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,A选项表示这是一个短而硬的弹簧故选A【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键10(3分)(2017德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A=4B=4C=4D=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程【解答】解:设他上
10、月买了x本笔记本,则这次买了(x+20)本,根据题意得:=4故选D【点评】此题考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键11(3分)(2017德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(ab),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将ABM绕点A旋转至ADN,将MEF绕点F旋转至NGF,给出以下五个结论:MAD=AND;CP=b;ABMNGF;S四边形AMFN=a2+b2;A,M,P,D四点共圆,其中正确的个数是()A2B3C4D5【分析】根据正方形的性质得到BAD=ADC=B=90,根据旋转的性质
11、得到NAD=BAM,AND=AMB,根据余角的性质得到DAM+NAD=NAD+AND=AND+NAD=90,等量代换得到DAM=AND,故正确;根据正方形的性质得到PCEF,根据相似三角形的性质得到CP=b;故正确;根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到ABMNGF;故正确;由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的NAM=90,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM2=a2+b2;故正确;根据正方形的性质得到AMP=90,ADP=90,得到ABP
12、+ADP=180,于是推出A,M,P,D四点共圆,故正确【解答】解:四边形ABCD是正方形,BAD=ADC=B=90,BAM+DAM=90,将ABM绕点A旋转至ADN,NAD=BAM,AND=AMB,DAM+NAD=NAD+AND=AND+NAD=90,DAM=AND,故正确;四边形CEFG是正方形,PCEF,MPCEMF,大正方形ABCD边长为a,小正方形CEFG边长为b(ab),BM=b,EF=b,CM=ab,ME=(ab)+b=a,CP=b;故正确;将MEF绕点F旋转至NGF,GN=ME,AB=a,ME=a,AB=ME=NG,在ABM与NGF中,ABMNGF;故正确;将ABM绕点A旋转至
13、ADN,AM=AN,将MEF绕点F旋转至NGF,NF=MF,ABMNGF,AM=NF,四边形AMFN是矩形,BAM=NAD,BAM+DAM=NAD+DAN=90,NAM=90,四边形AMFN是正方形,在RtABM中,a2+b2=AM2,S四边形AMFN=AM2=a2+b2;故正确;四边形AMFN是正方形,AMP=90,ADP=90,ABP+ADP=180,A,M,P,D四点共圆,故正确故选D【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键12(3分)(2017德州)观察下列图形,它是把一个三角形分别连接这个
14、三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,将这种做法继续下去(如图2,图3),则图6中挖去三角形的个数为()A121B362C364D729【分析】根据题意找出图形的变化规律,根据规律计算即可【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C【点评】本题考查的是三角形中位线定理、图形的变化,掌握图形的变化规律是解题的关键二、填空题(本大题共5小题,每小题4分
15、,共20分)13(4分)(2017德州)计算:=【分析】原式化简后,合并即可得到结果【解答】解:原式=2=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键14(4分)(2017德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行故答案为:同位角相等,两直线平行【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内
16、错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行15(4分)(2017德州)方程3x(x1)=2(x1)的解为1或【分析】移项后分解因式得到(x1)(3x2)=0,推出方程x1=0,3x2=0,求出方程的解即可【解答】解:3x(x1)=2(x1),移项得:3x(x1)2(x1)=0,即(x1)(3x2)=0,x1=0,3x2=0,解方程得:x1=1,x2=故答案为:1或【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键16(4分)(2017德州)淘淘和丽丽是非常要
17、好的九年级学生,在5月分进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是故答案为:【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率17(4分)(2017德州)某景区修建一栋复古建筑,其窗户设计如图所示圆O的圆心
18、与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域已知圆的半径为1m,根据设计要求,若EOF=45,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为【分析】把透光部分看作是两个直角三角形与四个45的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果【解答】解:设O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:MOG=EOF=45,FOG=90,且OF=OG=1,S透明区域=+211=+1,过O作ONAD于N,ON=FG=,AB=2ON=2=,S
19、矩形=2=2,=故答案为:【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键 三、解答题(本大题共7小题,共64分)18(6分)(2017德州)先化简,再求值:3,其中a=【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题【解答】解:3=a3,当a=时,原式=【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法19(8分)(2017德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A和同学亲友聊天;B学习;C购物;D游戏;E其它),端午
20、节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):选项频数频率A10mBn0.2C50.1Dp0.4E50.1根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案【解答】解:(1)从C可看出50.1=50人,答:次被调查的学生
21、有50人;(2)m=0.2,n=0.250=10,p=0.450=20,(3)800(0.1+0.4)=8000.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习【点评】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据20(8分)(2017德州)如图,已知RtABC,C=90,D为BC的中点,以AC为直径的O交AB于点E(1)求证:DE是O的切线;(2)若AE:EB=1:2,BC=6,求AE的长【分析】(1)求出OED=BCA=90,根据切线的判定得出即可;(2)求出BECBCA,得出比例式
22、,代入求出即可【解答】(1)证明:连接OE、EC,AC是O的直径,AEC=BEC=90,D为BC的中点,ED=DC=BD,1=2,OE=OC,3=4,1+3=2+4,即OED=ACB,ACB=90,OED=90,DE是O的切线;(2)解:由(1)知:BEC=90,在RtBEC与RtBCA中,B=B,BEC=BCA,BECBCA,=,BC2=BEBA,AE:EB=1:2,设AE=x,则BE=2x,BA=3x,BC=6,62=2x3x,解得:x=,即AE=【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出OED=BCA和BECBCA是解此题的关键 21(10分)(2017德州)如图所示,
23、某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知B=30,C=45(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由(参考数据:1.7,1.4)【分析】(1)如图作ADBC于D则AD=10m,汽车CD、BD即可解决问题(2)汽车汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作ADBC于D则AD=10m,在RtACD中,C=45,AD=CD=10m,在RtABD中,B=30,tan30=,BD=AD=10m,BC=BD+DC=(10+10)m
24、(2)结论:这辆汽车超速理由:BC=10+1027m,汽车速度=30m/s=108km/h,10880,这辆汽车超速【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型22(10分)(2017德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最
25、大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x1)2+h,代入(0,2)和(3,0)得:,解得:,抛物线的解析式为:y=(x1)2+;即y=x2+x+2(0x3);(2)y=x2+x+2(0x3),当x=1时,y=,即水柱的最大高度为m【点评】本
26、题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键23(10分)(2017德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EFAB交PQ于F,连接BF(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;当点Q与点C重合时(如图2),求菱形BFEP的边长;若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离【分析】(1)由折叠的性质得出PB=PE,BF=EF,BPF=EPF,由平行线的性质得出BPF=EFP,证出EPF=EFP
27、,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)由矩形的性质得出BC=AD=5cm,CD=AB=3cm,A=D=90,由对称的性质得出CE=BC=5cm,在RtCDE中,由勾股定理求出DE=4cm,得出AE=ADDE=1cm;在RtAPE中,由勾股定理得出方程,解方程得出EP=cm即可;当点Q与点C重合时,点E离点A最近,由知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案【解答】(1)证明:折叠纸片使B点落在边AD上的E处,折痕为PQ,点B与点E关于PQ对称,PB=PE,BF=EF,BPF=EPF,又EFA
28、B,BPF=EFP,EPF=EFP,EP=EF,BP=BF=EF=EP,四边形BFEP为菱形;(2)解:四边形ABCD是矩形,BC=AD=5cm,CD=AB=3cm,A=D=90,点B与点E关于PQ对称,CE=BC=5cm,在RtCDE中,DE=4cm,AE=ADDE=5cm4cm=1cm;在RtAPE中,AE=1,AP=3PB=3PE,EP2=12+(3EP)2,解得:EP=cm,菱形BFEP的边长为cm;当点Q与点C重合时,如图2:点E离点A最近,由知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,点E在边AD上移动的最大
29、距离为2cm【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度24(12分)(2017德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k0)的图象性质小明根据学习函数的经验,对函数y=x与y=,当k0时的图象性质进行了探究下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(k,1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点设直线PA交x轴于点M,直线PB交x轴于点N求证
30、:PM=PN证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a0)则,解得1直线PA的解析式为y=x+1请你把上面的解答过程补充完整,并完成剩余的证明当P点坐标为(1,k)(k1)时,判断PAB的形状,并用k表示出PAB的面积【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B的坐标;(2)设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PHx轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;根据结合PH、M
31、H、NH的长度,可得出PAB为直角三角形,分k1和0k1两种情况,利用分割图形求面积法即可求出PAB的面积【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对称,A点的坐标为(k,1),B点的坐标为(k,1)故答案为:(k,1)(2)证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a0)则,解得:,直线PA的解析式为y=x+1当y=0时,x=mk,M点的坐标为(mk,0)过点P作PHx轴于H,如图1所示,P点坐标为(m,),H点的坐标为(m,0),MH=xHxM=m(mk)=k同理可得:HN=kMH=HN,PM=PN故答案为:;y=x+1由可知,在PMN中,PM
32、=PN,PMN为等腰三角形,且MH=HN=k当P点坐标为(1,k)时,PH=k,MH=HN=PH,PMH=MPH=45,PNH=NPH=45,MPN=90,即APB=90,PAB为直角三角形当k1时,如图1,SPAB=SPMNSOBN+SOAM,=MNPHONyB+OM|yA|,=2kk(k+1)1+(k1)1,=k21;当0k1时,如图2,SPAB=SOBNSPMN+SOAM,=ONyBk2+OM|yA|,=(k+1)1k2+(1k)1,=1k2【点评】本题考查了正(反)比例函数的图象、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰三角形的判定以及三角形的面积,解题的关键是:(1)根据正、反比例函数图象结合点A的坐标求出点B的坐标;(2)利用等腰三角形的三线合一证出PM=PN;分k1和0k1两种情况求出PAB的面积-