《基于视觉的零件尺寸测量1.doc》由会员分享,可在线阅读,更多相关《基于视觉的零件尺寸测量1.doc(71页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date基于视觉的零件尺寸测量1基于视觉的零件尺寸测量1基于视觉的零件尺寸测量方法摘 要 模仿人的眼睛看事物,将物体看作是一幅图像来获得物体的尺寸信息,依靠视觉来采集图像信息是基于视觉的零件尺寸测量主要研究的过程。这些年来,基于视觉零件尺寸的测量方法技术已经深入到各行各业。它融入了各个学科的能源技术,成为了一门综合性的现代测量技术学科。实现了高精度测量,及微小物体测量。本设计
2、主要以一个方形工件为实例进行视觉测量,并且通过图像灰度化、二值化以及图像边缘检测来获取物体的实际尺寸。着重深入研究图像处理,并以图像标定和图像处理为主。同时本文详细论述基于视觉的零件尺寸测量技术的应用,并侧重于图像处理的计算过程,通过Matlab程序计算与二维图像绘制,实现了基于视觉的零件尺寸在线测量系统。主要研究以下内容:1、介绍视觉测量的基本意义、现状即以发展空间,确定设计的解决方案,阐述基于视觉的零件尺寸测量技术,对其技术在线测量方案进行理论分析和实验验证,证明它的可行性;2、分析获取图像的标定技术,采用标准件标定方法并且对整个测量系统标定,通过实验获得的数据进一步验证系统测量的精确度;
3、3、通过对图像处理算法的分析,利用Matlab程序,实现图像预处理和像素边缘检测。深入分析图像数据处理和亚像素边缘定位技术,提高计算速度和计算精度。 关键词:基于视觉;零件尺寸;图像处理;边缘检测;灰度化 Based on The Isual Component Size MeasurementABSTRACT Parts size measuring based on vision is the main research is to simulate human visual function to process the image to extract information from
4、 the objective things to understand, eventually acquire data needed for the actual size. In recent years, based on the visual component size measurement technology in the field of measurement in recent years the rapid development of new technology. It is based on the modern optics, the integration o
5、f computer, laser technology, image processing and analysis technology such as modern science and technology is a body comprehensive measuring technique. In this paper, we use part size measurement based on visual method to measure the mechanical parts of 2 d geometry, through image processing and M
6、atlab programming drawing two-dimensional curve analysis of mechanical parts processing. Emphatically study the key technology in the process of image processing and system calibration problems, achieve sub-pixel locating on the edge of mechanical parts size, further realize high precision of compon
7、ent size.Parts size measuring based on vision application in part size measurement is discussed in detail, and focuses on the process of image processing method, through the Matlab calculation and two-dimensional image rendering, parts size online measuring system based on vision is achieved. The ma
8、in research content below:1.Introduce the basic concept of topic, the research background and significance of the development and the existing problems at home and abroad, clear solutions to this topic, this paper based on the visual parts dimension measurement technology, the technology of online m
9、easurement scheme wake the theoretical analysis and experimental verification, to prove the feasibility of it2.Analysis of image calibration technology, the use of standard calibration method and the whole measurement system calibration, data obtained through the experiment to verify the accuracy of
10、 measurement system.3.Through the analysis of the image processing algorithm, using Matlab, the realization of image preprocessing and pixel edge detection.In-depth analysis of the image data processing and the subpixel edge location technology, improve the calculation speed and calculation accuracy
11、. Key Word: based on visual; parts size; image processing ;edge detection;gary目 录第一章 绪论.11.1基于视觉系统概述 .11.1.1基于视觉系统基本概念.11.1.2基于视觉技术的优越性.11.1.3基于视觉系统关键技术.21.2基于视觉的研究意义.31.3基于视觉的国内外发展现状.3第二章 图像采集系统的组成及设计.42.1系统的组成原理框架结构 .42.2系统的光学设备.52.2.1硬件设备摄像头的选择.52.2.2图像数据采集卡.62.2.3照明设备.7第三章 图像处理及尺寸测量方案.83.1图像处理的概
12、念.83.2系统定标.93.2.1定标的概念及原理.93.2.2成像原理.103.2.3选取恰当的定标方法.103.3图像预处理.123.3.1图像的灰度转换.133.3.2图像的二值化.143.4图像边缘检测.193.4.1图像边缘检测的论述.193.4.2 边缘检测的基本算子.19第四章 方形件的视觉尺寸测量.234.1方形件的系统定标.234.2方形件的图像处理.234.2.1方形件灰度处理.234.2.2方形件的二值化处理.244.2.3方形件的边缘检测.254.3方形件的测量结果.26第五章 尺寸测量的误差和误差分析.285.1误差及误差原由.285.2减少误差的方法.28第六章 总
13、结.30参考文献.31附录A.33A.1图像灰度化处理程序.33A.2图像二值化程序.33A.3图像一般梯度边缘检测处理程序.34 A.4图像Cany边缘检测程序.35 A.5图像的像素提取.38致 谢.40-第一章 绪论1.1基于视觉系统概述基于视觉的零件尺寸测量处理某物体的图像是利用非接触传感器与光学设备来完成的获取实物信息。近年来,基于视觉测量技术有着突飞猛进的发展,它有效得实现了加工、检测和控制形成自动化的过程。1.1.1基于视觉系统基本概念基于视觉的零件尺寸测量是从对事物的图像捕捉过程之中实现非接触获得实物信息。这种技术实现了大批量微小零件生产所需尺寸测量,并且摆脱了人工的繁琐劳动,
14、实现了自动加工过程,设计合理,适用于流水生产线大批量生产。1.1.2基于视觉技术的实用性1.自动测量自动测量即非人工操作,利用计算机自动检测,能够及时反映出生产过程中出现的测量问题,及问题除在何处,并做出改正,避免影响生产进度。在相当的一段时期内,测量基本上处于测量对象不变或没有明显变化,同时测量出的大多数是离线的,而不是生产中实现的。进行在线测量能够降低消耗、减少其成本、提高产量、增加收益,还可以保证产品质量。2.高精度科学技术正在向着微小领域在发展,制造业需求的测量精度也不断得在提高,由微米级向着纳米级发展。伴随着现代科学技术不断在发展,大多数高科技领域均已迈入了纳米的世界,例如精密元器件
15、的测量1、电子工业高密度半导体集成电路2等。纳米技术的加工是离不开纳米高精度的测量技术及设备的,目前,国外的一些研究机构研究的物体表面已经精确到纳米级,许多精密测量仪器也随之出现。3.非接触式测量非接触式测量对于被测物体没有压力,从而减少了被测物体受力变形的可能,测量数据精确,也容易操作,所以应用越来越广泛。其检测方法有很多,比较常用的有电容法、光学法等等。4互联网化因为互联网络技术正在迅速地改变着人们生活的方方面面,具体涉及到测控技术领域、远程数据的采集与测控,远程设备的故障诊断,小到生活中各种耗能抄表,大到各种大型工业生产,都离不开它的使用。 伴随着无线通信技术的迅猛发展,无线通信在测控领
16、域方面也得到了应用,形成了无线分布式传感控制网络(Wireless Distributed Sensor/Control Networks,WDSCN) 3。WDSCN 主要对一件或一组机器与机器间的通信和控制而进行设计的,可以应用到传感器及控制器、执行器中。WDSCN主要适用于各种难以布线和变化的场合。测控网络功能的不断强大,使得其整体功能也在日益增强,使得它的应用越来越广泛。5.智能化对于现代化的加工的过程实行控制,制造业中的常常利用很多的传感器作为智能化仪器来获得测量的信息,测量出所需要的结果。仪器智能化是融入了智能现代的科学化技术,令检测实现了在线、动态、主动等实时检测与控制上。 6.
17、高效率和低成本为了加强市场的,减少人工生产所带来的费用,实现测量无人化、自动化,厂家都会努力得加强质量的管理和降低生产的成本,因此视觉测量孕育而生。1.1.3基于视觉系统关键技术1.图像的获取利用计算机获取被测物体的实际信息承载在图像上,在将图像信息加以分析转化为计算机处理数据的过程事实上就是获取图像、照明使得图像聚焦、确定图像并形成数字输出信号是这个过程。2.图像处理在视觉系统中,图像处理是视觉测量的核心步骤,其包括图像滤波处理、图像的灰度化、图像的边缘处理、图像像素提取等内容。3.系统的标定通过摄像机来获取空间物体的图像信息的过程,高精度测量系统则需要高精度标定参数。绝对高的视觉测量精度是
18、摄像机系统标定减少镜头即便产生误差至关重要的一步。4.亚像素边缘的定位技术由于工业测量中测量精度要求的不断提高,不同边缘检测已经不能够满足现在生产测量的需求,所以等高精度的检测方法亚像素边缘的定位技术随之产生。它的检测方式快、准、稳,受到越来越多各大行业的认可,被广泛使用。1.2基于视觉的研究意义因为现代工业加工工艺水平的提升,所以机械零件的生产对于零件产品测量等方面提出了更高要求。然而传统的人工测量方法已经跟不上现代生产的大批量、高速度,因而逐渐被现代生产产业所淘汰。本设计所题研究的基于视觉的零件尺寸测量会在图像的测量方面上大大减少人工测量这道工序,从而减少了对人工的依赖,为企业降低了生产成
19、本。同时减小零件磨损的情况,实现非接触式的测量,并且对于一些人不可以接触到的物体或者难以识别的零件来进行测量。成功的将人与计算机相结合,实现快速准确地测量。 1.3基于视觉的国内外发展现状随着机器视觉的会速发展,人们开始想到把计算机视觉技术的迅速性、高智能性应用与测量检测技术当中,产生了一种新型的测量技术视觉测量技术4。视觉测量技术是从实物的图像中获取所需要的测量信息,通过软件对图像进行图像处理,从图像中获取有用的讯息。视觉测量技术实现现代化精密测量技术的发展需求,目前已经广泛应用于各个科学领域,并且有着不可替代的作用。而在近期的北京国际机床博览会上,可以看见许多国家利用视觉测量技术研制出来的
20、仪器,例如光学三坐标测量仪、基于视觉技术的刀具预调测量仪5等十分先进仪器。国外视觉测量技术已经发展得如此迅速,涵盖的应用领域如此广泛。20 世纪末以来以美国、德国、日本为首的开始研制除各种基于视觉检测测量模型,应用于不同科学领域的检测6。国外也有许多企业深入研究此类技术,比如说加拿大的德萨公司、IO工业公司、Coreco Imaging公司;丹麦的JAI/Pulnix 公司;瑞士的 Photonfocus 公司;日本的凯恩斯公司、索尼公司以及德国的SIEMENS公司等等。如图 1.1所示。如今,零件尺寸测量的视觉检测已经渗透到了各个行业。 图1.1 视觉检测设备Fig.1.1 Visual d
21、etection equipment第二章 图像采集系统的组成及设计本章主要介绍获取图像的光学仪器的组成构造原理、硬件设备选择和视觉系统定标。2.1系统的组成原理框架结构本文设计零件尺寸测量系统总体有四部分组成如图2.1:1.计算机 完成摄像机采集数据的处理;2.摄像机 通过摄像机拍摄完成对待测零件的图像信息采集;3.背光源 主要为摄像机图像采集时提供光源;4.位置传感器 用于光源和摄像机的触发工。图2.1 零件尺寸测量系统Fig.2.1 parts size measurement system2.2系统的光学设备2.2.1硬件设备摄像头的选择本文所选用的摄像机是具有灵敏、抗光、抗摔、轻小等
22、优点的CCD摄像机,它是一种半导体成像器件。1.工作原理(1)CCD摄像器件:它的作用是把摄像机采集到的光学信号转化为电信号,这样将采集到的信息作为视频信号来输出;(2)时序脉冲发生器和驱动电路:它的作用是为生产CCD摄像器件来进行信息转换,同时进行放大输出;(3)视频的采样和保持电路:它的作用是消除CCD的输出各种影响视频采集的不良信号。再经该过电路的处理,使得视频信号转变成为数字视频信号;(4)视频处理电路:这个电路和摄像管式摄像机电路有绝对相同的特点,所涉及到的电路有钳位放大、Y校正、白电平切割、消音混合、黑白屏控制、同步混合、输出激励等电路7。将视频信号处理成电视信号;(5)同步信号产
23、生器:这个部分同摄像管式摄像机中同步信号发生器的原理大致上是相同。2.CCD的工作原理 CCD它是利用其镜头拍摄物体信息存储在芯片上,再由CCD处理物体形成的视频信号,根据电流大小来控制光强的大小,再经过一系列处理的到所需结果。将显示器的视频输入端和视频信号连接到一块后就可以看到和原始图像一样的视频播放了。机内的其他各个电压值的电源都会由电源变换而获得。如图2.2: 图2.2 LED Fig2.2 LED2.2.2图像采集卡图像采集卡采集图像信息传送到计算机中进行处理。我们平时所用到的剪切画面、添加滤镜、音效和字幕利用它,将摄像机视频信号由摄像带上转存到计算机里,将数字化视频信号进行后续的编辑
24、加工。最后把编辑好的视频信号转化成标准的VCD/DV及网上流行的各种媒体格式,以方便其传播。1.原理将采集视频信号在电脑中进行一系列处理、存储。其实我们看到的视频是由许多静态图按照一定的顺序快速出现形成的,所以视频也被称为运动图像。因此很多时候采集卡,也会被称为视频采集卡如图2.3:图2.3 图像采集卡 Fig.2.3 image capture card2.技术参数(1)图像传输格式图像传输的格式是一个非常重要参数,图像采集卡需要支持系统中的摄像机采用的输出信号格式,这样才能够保证图像的准确输出。在数字相机中还有很多图像的传输形式也到了很广泛应用。(2)像素格式黑白图像:图像有256个灰度级
25、,也可以用八位表示。更高精度的图像则需要更高的位表示。彩色图像:根据它的亮度级别不同,彩色图像可以分为两种形式,可由RGB 3种色彩组合而成,。(3)传输通道数当摄像机需要信号多路同时也需要快速输出。一般的情况下,有1路、2路、4路或者8路输入等。3.分辨率采集卡分辨率的性能是由它能够支持多大矩阵决定的。采集卡的分辨率的性能有两种:单行最大的点数和单帧最大的行数。同时三维推出的采集卡能够达到1920*1080的分辨率。(1)采样频率图像处理功能的好坏、速率的大小是由图像的采样频率来决定的。一定要注意所选用的采集频率是否符合采集所需要的频率。(2)传输速率主流的图像采集卡和主板的理论传输速度为1
26、32MB/S。2.2.3照明设备照明设备就是为拍摄提供光源的设备,它的发光效果将直接影响到视觉效果。其实液晶显示器其它的本身并不会发光,只能够显示图形或者字符对光线调制的结果。背光灯主要分为CCFL和LED两个类型。本设计选用的背光灯是LED,它是电能转化成为光能。构成像素的每个LED发光的亮度可以调节强弱,细致的调节程度所显示的图像就会十分细腻,而且色彩也极为丰富,图像的效果令人十分满意,同时LED节能环保,又十分耐用。第三章 图像处理及尺寸测量方案本章节是对图像处理的基本概念及内容方法作了详细的论述,然后通过图像处理的方法,选出最佳图像处理方法应用于零件的尺寸测量当中,以保证零件的精确度和
27、测量效率。3.1图像处理的概念了解图像处理的基本概念及原理中首先要了解图像可以分为矢量图形和位图图像两种形式。这两种图像各具自己的特点,为了能够完成更好的图像作品,可以在绘制图像和图像处理过程中将二者混合应用,来达到最佳的图像效果。以下是图像处理所需了解的概念知识。1.矢量图矢量图是由一些数学方式所描述的是不同线性的结合。图像上的点和路径是其基本的组成。矢量图无论任何格式及分辨率被打印出来都十分清晰,经常用于绘图、定标设计或机械制图等领域。但是矢量图又有着色彩过于单调,过渡颜色不细腻等缺陷。2.位图图像位图图像是由很多不同色彩的小方格所组成,而每一个小格就代表着一种颜色的像素,是图像的基本单位
28、。放大位图图像就可以看到这些小色块。位图图像能够细腻逼真地表现出各种图像效果,常用于各种照片图像保存、广告设计等,但是该图像文件尺寸的大小与分辨率有关。3.像素像素是指组成图像的每一个微小的点,人们称这些点为像素或者像素点。这些单一颜色的小格是图像中不可分割的原色和单位,将不同颜色的小格排列成横行或者纵列组成一幅图像。像素的单位为Pixel,想要图像的效果好就必须使每一个像素的颜色值是不同的,在单位面积中的像素高。4.分辨率在图像中特定范围内所含像素点的个数称之为分辨率。用像素/英寸或者Pixel/cm。作为表示单位。5.常用的色彩模式三色颜色模式、四颜色模式以及其他模式用色相、饱和度、亮度表
29、示的。空间坐标的函数就是我们所看到的图像客观的反应了物体亮度和颜色随着空间位置变化的变化。而在一幅图像中含有的信息是光的强弱,它会随着点(x,y),及光线的波长u和时间t而变换,所以图像函数可以表示为: (3-1)而当我们只考虑光强的时候,在视觉效应上我们就只能在黑白世界中来区分颜色的深浅,却看不到其他的色彩,这样的图像称为黑白图像或者灰度图像,这是图像模式表示为 (3-2)其中的V(u)表示相对视敏系数。不同颜色的可见光的波长就不同,当只有黑白色的图像上添加上波长这一个重要因素时,就能够形成彩色的图像了。所以按照图像原理可知,颜色可以被分为红、绿、蓝三种颜色,则数学公式表示图像的彩色为: (
30、3-3) (3-4)式子中R(u)、G(u)、B(u)分别是红、绿、蓝三种基本颜色的空间视觉系数。随着时间在不停运动的图像称之为运动图像,反之称为静止图像,然而对于灰度图像来说,它的函数表达式为: (3-5)3.2系统的定标3.2.1定标的概念及原理定标在视觉测量中有着不可替代的地位,它的意义实际上就是确定多维物体坐标系和相机的各个参数的过程实际上就是摄像机的标定。各种成像设备都存在着成像误差,因为成像的镜头在拍摄过程中会不能避免地产生畸变,所以视觉测量高精度实现的关键是找到简单而又具有超高精度的摄像机标定方法。想要获取被测量的物体的图像信息,则需要建立实物和图像之间的数学表关系式。即被测物体
31、与其图像之间的比例关系,也可以说是图像中的每一个像素代表着被测物体的具体长度单位。而在一定的标定状况下,被测的物体上的两个点,并且点和点间的距离都是已经知道的。对应图像上的两个点在处理的图像系统中的坐标分别是Xn,Xo。则每一个像素在图像测量系统中代表着物体的实际尺寸,则表达式为: (3-6)3.2.2成像原理图像的成像是一个比较复杂的过程,当我们对成出的图像进行目的分析时需要考虑到:1.图像与成像之间的几何关系即在哪能够发现目标图像;2.所谓成像时目标的亮度达到多少就是照明,它能够表示亮度与目标成像系统的光学性能之间的关系;3.用数学矩阵来表示图像就是成像处理的数学表达式,再利用计算机计算处
32、理图像,得出结果。把某图像投影点的坐标变化成为另一个图像投影点的坐标过程叫做投影变换英文名字projection transformation。目前基本的方法有:(1)解析变换法,就是找出两投影仪间所存在的数学关系。计算方法通常有反解变换法,即;正解变换法即;(2)数值的变换法,即运用数值相近法建立两阴影中间的各点之间的数学关系或求取点的变化坐标;(3)数值解析变换法,就是利用上面叙述的两中方法,即按照数值法实现变换,然后按照解析法来实现变换。办随着计算机的辅助建立图像数学基础和图像投影变换软件进行深入研究,再进一步开展数学图像的应用领域。在这之中计算机辅助图像投影变换将会代替传统的变换方法,
33、将会是绘图生产中最具有突破性的改革。3.2.3选取恰当的定标方法系统的标定方法是根据是否需要有标定物体可以被分为传统摄像标定方法、摄像机自动标定方法和基于主动视觉8的标定方法三种,这些方法也是目前应用最广泛的分类方式。1.一般的摄像机标定方法这是一种依据特殊情况为依据的标定方法,例如利用图像处理和计算机数学计算相结合获得摄像机的各部分参数。而这种标定方法分为四种:(1)利用最优化算法的标定方法9这一种摄像机定标法可以把摄像机光学的成像系统模型想像得十分复杂,其实这样也带来了问题,因为摄像机标定的结果是由摄像机给定的初始值决定的所以初始的数值定的不合适所以通过优化的程序就很难获得准确的标定结果。
34、同时优化程序不但非常费而且没有办法获取标定的结果。根据参数的模型,最优化方法又可以分为:A.摄影测量传统方式,它是利用小孔摄相机的模型在同一个平面上为前提,先假想形成图像的模型十分困难,然后认真合理地考虑设计方案,考虑整个定标过程中所涉及到的各方面可能因素,采用十七个参考值来描绘每一幅图和空间实物之间的关系,但是在这个环节中存在着计算量庞大、繁琐的严重问题。B.直接线性变换,这种方法是利用线性方程求出摄像机的各项参数值,再确定所需结果。但是因为形成图像过程中没有想到图像突变所产生到的问题,所以通过非线性最优化的算法来是计算精度更加精确,此法可谓是视觉测量学中最简便的策略。(2)利用摄像机透视变
35、换矩阵的标定方法10从原始的测量学得出,摄像机各部分参数的方程是描述空间坐标系之间数学关系式。假设不考虑任何突变产生的影响测量精度的因素,当设定一空间点及点相对应的图位点,就可以用数学方程式来求解矩阵里的各单元。这种标定方法不用最优方法来求解所涉及的摄像机的参数,所以可以提高运算速度,能够快速得获取定标的结果。但是,该方法求解过程中没有涉及到上述因素,就会定标的结果会受到干扰。(3)考虑畸变补偿的两步法11利用测量结果总会受到初始值的干扰,用最优化算法来求解要求的结果是测量学的普通方法。根据线性变化法和透视变换矩阵法又考虑不到非线性畸变但直接利用线性方程来求解未知参数的两种方法特性。 但是该方
36、法也是存在这一定的问题:A.该方法具有一定局限性,不是对所有的系统都有效;B.当提高精度的同时就会考虑到更多的畸变产生的影响,从而导致了计算量的大大增加,也增长了计算时间;C.标定两台摄像机之后,就必须要明确两台摄像机间的相应几何位置关系,从而又增加了新的计算量。(4)摄像机成像模型的双平面标定方法12 不需要任何摄像机的标定位置,只要给出一个图像的点的位置,就能够推算出两个确定平面之间相对应坐标,可以确定成像之中对应的光线。它的优点是使用线性方程来求解参数,缺点是该方法需要大量参数,过分依赖于参数化。2.摄像机自标定方法自标定法是图像与图像之间都有着类似于Kruppa方程的一定条件,而利用求
37、解该方程组就可以解出内在的数值。自标定方法有三种解法:(1)直接求解Kruppa方程的自标定13应用绝对二次曲线及极限变换的概念求出了Kruppa方程的方法叫做直接求Kruppa方程的自标定13。而针对求解Kruppa方程许多科学家提出了基于连续同伦算法14、基于代数几何算法15以及简介的非线性优化算法16等,但是上述的算法由于都存在着待优化参数太多的弊端所以比较容易陷入局部最优化值中。(2)分层逐步定标17分层逐步定标法第一步是要对图像的序列做出摄影重建,然后对二次曲线添加约束条件,制定出仿射参数及摄像机的内部参数。(3)基于绝对二次曲面的自标定18与Kruppa数学计算方法相同,该方法虽然
38、实质上也应用到了欧式变换中的不变换,但是在许多幅图输入的同时都重新建立的时候,该方法更加优越。为了确保无限平面使全部信息保持一致,所以这种方法囊括了二次平面曲线的全部信息。(4)基于主动视觉标定方法这种方法是把摄像机准确地放置在操作平台上,然后利用图像与摄像机运动数据去确定摄像机各项参数值,操纵操作平台做所设定的运动以获取大量的照片,再通过数学方程来求解。但是这种方法在摄像机运动无法知道或者无法控制其运动的场合时就不能使用这种方法,而且这种方法要求运动平台的精度要高,其成本也是较高的。求出单位像素实际得物理尺寸是系统标定的最终目的,它的尺寸方向包括水平方向与垂直方向。对于本论文提高测量效率来讲,对于整个定标系统需要进行调整,提出了另外一种标定方法,即参照物是标准的测量工件,因而这样就可以不再考虑参考方面的问题,也能够保证标定的精确度。3.3图像预处理整个测量系统的性能是受到图像预处理的结果好坏的直接影响,本章节将会介绍到图像的灰度转换、图像的二值化、图像边缘检测等常用图像处理方法,并与一般的算法进行对比选择,通过分析实验学出最佳处理方法。3.3.1图像的灰度转换1.灰度图像 灰度图像的取值范围一般是256个值,所以它通常为八位无符号整数数据及int8。纯黑色的用“0”代表,纯白色的用“255”代表,而从黑色过渡到白色的颜色则是用中间的数字按顺序排列表示。有时用doub