《四年级奥数第六讲——乘法原理与加法原理(学生用).doc》由会员分享,可在线阅读,更多相关《四年级奥数第六讲——乘法原理与加法原理(学生用).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流四年级奥数第六讲乘法原理与加法原理(学生用).精品文档.远辉教育奥数班第六讲乘法原理与加法原理主讲人:杨老师 学生:四年级 电话:62379828一、 学习要点:乘法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决例如某人要从北京到大连拿一份资料,之后再到天津开会其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天
2、津要分两步走第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:注意到 31=3如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到32=6在上面讨论问题的过程中,我们把所有可能的办法一一列举出来这种方法叫穷举法穷举法对于讨论方法数不太多的问题是很有效的在上面的例子中,完成一件事要分两个步骤由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的
3、方法,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1m2mn种不同的方法这就是乘法原理加法原理生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决例如 某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法上面的每一种走法都可以从北京到天津,故共有5+4=9种
4、不同的走法在上面的问题中,完成一件事有两大类不同的方法在具体做的时候,只要采用一类中的一种方法就可以完成并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+mk种不同的方法这就是加法原理二、 典例剖析:乘法原理例1 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过问:这
5、只甲虫最多有几种不同的走法?例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5 由数字0、1、2、3组成三位数,问:可组成多少个不相等的三位数?可组成多少个没有重复数字的三位数?例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子问:共有多少种不同的放法?例8 现有一角的人民币4张,
6、贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?加法原理例1 学校组织读书活动,要求每个同学读一本书小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本那么,小明借一本书可以有多少种不同的选法?例2 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同问:从两个口袋内任取一个小球,有多少种不同的取法?从两个口袋内各取一个小球,有多少种不同的取法?例3 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走那么,从甲地到丙地共有多少种走法?例4 如下页图
7、,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过问:这只甲虫有多少种不同的走法?例5 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?例6 从1到500的所有自然数中,不含有数字4的自然数有多少个?例7 如下页左图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方问有多少种不同的走法?模拟测试1 某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走问,罪犯共有多少种逃走的方法?2如右图,在三条平行线
8、上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线)在每条直线上各取一个点,可以画出一个三角形问:一共可以画出多少个这样的三角形?2 在自然数中,用两位数做被减数,用一位数做减数共可以组成多少个不同的减法算式?3 一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上问:共有多少种不同的站位方法?5由数字1、2、3、4、5、6、7、8可组成多少个三位数?三位偶数?没有重复数字的三位偶数?百位为8的没有重复数字的三位数?百位为8的没有重复数字的三位偶数?6某市的电话号码是六位数的,首位不能是0,其余各位数上可以是09中的任何一个,并且不同位上的数字可以重复那么,这个城市最多可容纳多少部电话机?7如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?8书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?9如下图中,沿线段从点A走最短的路线到B,各有多少种走法?10在11000的自然数中,一共有多少个数字0?11在1500的自然数中,不含数字0和1的数有多少个?12十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?