2017年全国统一高考数学试卷(理科)(新课标ⅰ).doc

上传人:恋****泡 文档编号:2380032 上传时间:2020-03-12 格式:DOC 页数:27 大小:617.64KB
返回 下载 相关 举报
2017年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第1页
第1页 / 共27页
2017年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2017年全国统一高考数学试卷(理科)(新课标ⅰ).doc》由会员分享,可在线阅读,更多相关《2017年全国统一高考数学试卷(理科)(新课标ⅰ).doc(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2017年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合Ax|x1,Bx|3x1,则()AABx|x0BABRCABx|x1DAB2(5分)如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()ABCD3(5分)设有下面四个命题p1:若复数z满足R,则zR;p2:若复数z满足z2R,则zR;p3:若复数z1,z2满足z1z2R,则z1;p4:若复数zR,则R其中的真命题为()Ap1

2、,p3Bp1,p4Cp2,p3Dp2,p44(5分)记Sn为等差数列an的前n项和若a4+a524,S648,则an的公差为()A1B2C4D85(5分)函数f(x)在(,+)单调递减,且为奇函数若f(1)1,则满足1f(x2)1的x的取值范围是()A2,2B1,1C0,4D1,36(5分)(1+)(1+x)6展开式中x2的系数为()A15B20C30D357(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10B12C14D168(5分)如图程序框图是为了求

3、出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()AA1000和nn+1BA1000和nn+2CA1000和nn+1DA1000和nn+29(5分)已知曲线C1:ycosx,C2:ysin(2x+),则下面结论正确的是()A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲

4、线向左平移个单位长度,得到曲线C210(5分)已知F为抛物线C:y24x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A16B14C12D1011(5分)设x、y、z为正数,且2x3y5z,则()A2x3y5zB5z2x3yC3y5z2xD3y2x5z12(5分)几位大学生响应国家的创业号召,开发了一款应用软件为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是20,接下来

5、的两项是20,21,再接下来的三项是20,21,22,依此类推求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂那么该款软件的激活码是()A440B330C220D110二、填空题:本题共4小题,每小题5分,共20分13(5分)已知向量,的夹角为60,|2,|1,则|+2| 14(5分)设x,y满足约束条件,则z3x2y的最小值为 15(5分)已知双曲线C:1(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点若MAN60,则C的离心率为 16(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为OD、E、

6、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答17(12分)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC1,a3,求ABC的周长18(12分)如图,在四棱锥PABCD中,ABCD,且BAP

7、CDP90(1)证明:平面PAB平面PAD;(2)若PAPDABDC,APD90,求二面角APBC的余弦值19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2)(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程

8、方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得9.97,s0.212,其中xi为抽取的第i个零件的尺寸,i1,2,16用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01)附:若随机变量Z服从正态分布N(,2),则P(3Z+3)0.9974,0.9974160.9592,0.0920(12分)已知椭圆C:+1(ab0),四点P1(1

9、,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点21(12分)已知函数f(x)ae2x+(a2)exx(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围选修4-4,坐标系与参数方程22(10分)在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a选修4-5:不等式选讲23已知函数f(x)x2+ax+4,g(x)|x+1|+|x

10、1|(1)当a1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围2017年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合Ax|x1,Bx|3x1,则()AABx|x0BABRCABx|x1DAB【解答】解:集合Ax|x1,Bx|3x1x|x0,ABx|x0,故A正确,D错误;ABx|x1,故B和C都错误故选:A2(5分)如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成

11、中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()ABCD【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S,则对应概率P,故选:B3(5分)设有下面四个命题p1:若复数z满足R,则zR;p2:若复数z满足z2R,则zR;p3:若复数z1,z2满足z1z2R,则z1;p4:若复数zR,则R其中的真命题为()Ap1,p3Bp1,p4Cp2,p3Dp2,p4【解答】解:若复数z满足R,则zR,故命题p1为真命题;p2:复数zi满足z21R,则zR,故命题p2为假命题;p3:若复数z1i,z22i满足z1z2R,但z1,故命题p3

12、为假命题;p4:若复数zR,则zR,故命题p4为真命题故选:B4(5分)记Sn为等差数列an的前n项和若a4+a524,S648,则an的公差为()A1B2C4D8【解答】解:Sn为等差数列an的前n项和,a4+a524,S648,解得a12,d4,an的公差为4故选:C5(5分)函数f(x)在(,+)单调递减,且为奇函数若f(1)1,则满足1f(x2)1的x的取值范围是()A2,2B1,1C0,4D1,3【解答】解:函数f(x)为奇函数若f(1)1,则f(1)1,又函数f(x)在(,+)单调递减,1f(x2)1,f(1)f(x2)f(1),1x21,解得:x1,3,故选:D6(5分)(1+)

13、(1+x)6展开式中x2的系数为()A15B20C30D35【解答】解:(1+)(1+x)6展开式中:若(1+)(1+x2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得可知r2时,可得展开式中x2的系数为可知r4时,可得展开式中x2的系数为(1+)(1+x)6展开式中x2的系数为:15+1530故选:C7(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些

14、梯形的面积之和为()A10B12C14D16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2(2+4)6,这些梯形的面积之和为6212,故选:B8(5分)如图程序框图是为了求出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()AA1000和nn+1BA1000和nn+2CA1000和nn+1DA1000和nn+2【解答】解:因为要求A1000时输出,且框图中在“否”时输出,所以“”内不能输入“A1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D9(5分)已知曲线C1:ycosx,C2:

15、ysin(2x+),则下面结论正确的是()A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数ycos2x图象,再把得到的曲线向左平移个单位长度,得到函数ycos2(x+)cos(2x+)sin(

16、2x+)的图象,即曲线C2,故选:D10(5分)已知F为抛物线C:y24x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A16B14C12D10【解答】解:方法一:如图,l1l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,由图象知要使|AB|+|DE|最小,则A与D,B与E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为yx1,联立方程组,则y24y40,y1+y24,y1y24,|DE|y1y2|8,|AB|+|DE|的最小值为2|DE|16,方法二:设直线l

17、1的倾斜角为,则l2的倾斜角为 +,根据焦点弦长公式可得|AB|DE|AB|+|DE|+,0sin221,当45时,|AB|+|DE|的最小,最小为16,故选:A11(5分)设x、y、z为正数,且2x3y5z,则()A2x3y5zB5z2x3yC3y5z2xD3y2x5z【解答】解:x、y、z为正数,令2x3y5zk1lgk0则x,y,z3y,2x,5z,lg03y2x5z另解:x、y、z为正数,令2x3y5zk1lgk0则x,y,z1,可得2x3y,1可得5z2x综上可得:5z2x3y解法三:对k取特殊值,也可以比较出大小关系故选:D12(5分)几位大学生响应国家的创业号召,开发了一款应用软

18、件为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂那么该款软件的激活码是()A440B330C220D110【解答】解:设该数列为an,设bn+2n+11,(nN+),则ai,由题意可设数列an的前N项和为SN,数列bn的前n项和为Tn,则Tn211+221+2n+112n+1n2,可知当N为时(nN+),数列an的前

19、N项和为数列bn的前n项和,即为2n+1n2,容易得到N100时,n14,A项,由435,440435+5,可知S440T29+b5230292+251230,故A项符合题意B项,仿上可知325,可知S330T25+b5226252+251226+4,显然不为2的整数幂,故B项不符合题意C项,仿上可知210,可知S220T20+b10221202+2101221+21023,显然不为2的整数幂,故C项不符合题意D项,仿上可知105,可知S110T14+b5215142+251215+15,显然不为2的整数幂,故D项不符合题意故选A方法二:由题意可知:,根据等比数列前n项和公式,求得每项和分别为

20、:211,221,231,2n1,每项含有的项数为:1,2,3,n,总共的项数为N1+2+3+n,所有项数的和为Sn:211+221+231+2n1(21+22+23+2n)nn2n+12n,由题意可知:2n+1为2的整数幂只需将2n消去即可,则1+2+(2n)0,解得:n1,总共有+23,不满足N100,1+2+4+(2n)0,解得:n5,总共有+318,不满足N100,1+2+4+8+(2n)0,解得:n13,总共有+495,不满足N100,1+2+4+8+16+(2n)0,解得:n29,总共有+5440,满足N100,该款软件的激活码440故选:A二、填空题:本题共4小题,每小题5分,共

21、20分13(5分)已知向量,的夹角为60,|2,|1,则|+2|2【解答】解:【解法一】向量,的夹角为60,且|2,|1,+4+422+421cos60+41212,|+2|2【解法二】根据题意画出图形,如图所示;结合图形+2;在OAC中,由余弦定理得|2,即|+2|2故答案为:214(5分)设x,y满足约束条件,则z3x2y的最小值为5【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(1,1)z3x2y的最小值为31215故答案为:515(5分)已知双曲线C:1(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M

22、、N两点若MAN60,则C的离心率为【解答】解:双曲线C:1(a0,b0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点若MAN60,可得A到渐近线bx+ay0的距离为:bcos30,可得:,即,可得离心率为:e故答案为:16(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为OD、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最

23、大值为4cm3【解答】解法一:由题意,连接OD,交BC于点G,由题意得ODBC,OGBC,即OG的长度与BC的长度成正比,设OGx,则BC2x,DG5x,三棱锥的高h,3,则V,令f(x)25x410x5,x(0,),f(x)100x350x4,令f(x)0,即x42x30,解得x2,则f(x)f(2)80,V4cm3,体积最大值为4cm3故答案为:4cm3解法二:如图,设正三角形的边长为x,则OG,FGSG5,SOh,三棱锥的体积V,令b(x)5x4,则,令b(x)0,则4x30,解得x4,(cm3)故答案为:4cm3三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必

24、考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答17(12分)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC1,a3,求ABC的周长【解答】解:(1)由三角形的面积公式可得SABCacsinB,3csinBsinA2a,由正弦定理可得3sinCsinBsinA2sinA,sinA0,sinBsinC;(2)6cosBcosC1,cosBcosC,cosBcosCsinBsinC,cos(B+C),cosA,0A,A,2R2,sinBsinC,bc8,a2b2+c22bccosA,b2+c2bc9,(b+c

25、)29+3cb9+2433,b+c周长a+b+c3+18(12分)如图,在四棱锥PABCD中,ABCD,且BAPCDP90(1)证明:平面PAB平面PAD;(2)若PAPDABDC,APD90,求二面角APBC的余弦值【解答】(1)证明:BAPCDP90,PAAB,PDCD,ABCD,ABPD,又PAPDP,且PA平面PAD,PD平面PAD,AB平面PAD,又AB平面PAB,平面PAB平面PAD;(2)解:ABCD,ABCD,四边形ABCD为平行四边形,由(1)知AB平面PAD,ABAD,则四边形ABCD为矩形,在APD中,由PAPD,APD90,可得PAD为等腰直角三角形,设PAAB2a,则

26、AD取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C(),设平面PBC的一个法向量为,由,得,取y1,得AB平面PAD,AD平面PAD,ABPD,又PDPA,PAABA,PD平面PAB,则为平面PAB的一个法向量,cos由图可知,二面角APBC为钝角,二面角APBC的余弦值为19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2)(1)

27、假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得9.97,s0.212,其中xi为抽取的第i个零件的尺寸,i1,2,16用样本平均数作为的估计值,用样本

28、标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01)附:若随机变量Z服从正态分布N(,2),则P(3Z+3)0.9974,0.9974160.9592,0.09【解答】解:(1)由题可知尺寸落在(3,+3)之内的概率为0.9974,则落在(3,+3)之外的概率为10.99740.0026,因为P(X0)(10.9974)00.9974160.9592,所以P(X1)1P(X0)0.0408,又因为XB(16,0.0026),所以E(X)160.00260.0416;(2)()如果生产状态正常,一个零件尺寸在之外的概率只有0.0

29、026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的()由9.97,s0.212,得的估计值为9.97,的估计值为0.212,由样本数据可以看出一个零件的尺寸在之外,因此需对当天的生产过程进行检查剔除之外的数据9.22,剩下的数据的平均数为(169.979.22)10.02,因此的估计值为10.022160.2122+169.9721591.134,剔除之外的数据9.22,剩下的数据的样本方差为(1591.134

30、9.2221510.022)0.008,因此的估计值为0.0920(12分)已知椭圆C:+1(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点【解答】解:(1)根据椭圆的对称性,P3(1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,椭圆必不过P1(1,1),P2(0,1),P3(1,),P4(1,)三点在椭圆C上把P2(0,1),P3(1,)代入椭圆C,得:,解得a24,b21,椭圆C的方程为1证明:(2)当斜率不存在时,

31、设l:xm,A(m,yA),B(m,yA),直线P2A与直线P2B的斜率的和为1,1,解得m2,此时l过椭圆右顶点,不存在两个交点,故不满足当斜率存在时,设l:ykx+t,(t1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t240,x1x2,则1,又t1,t2k1,此时64k,存在k,使得0成立,直线l的方程为ykx2k1,当x2时,y1,l过定点(2,1)21(12分)已知函数f(x)ae2x+(a2)exx(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围【解答】解:(1)由f(x)ae2x+(a2)exx,求导f(x)2ae2

32、x+(a2)ex1,当a0时,f(x)2ex10,当xR,f(x)单调递减,当a0时,f(x)(2ex+1)(aex1)2a(ex+)(ex),令f(x)0,解得:xln,当f(x)0,解得:xln,当f(x)0,解得:xln,x(,ln)时,f(x)单调递减,x(ln,+)单调递增;当a0时,f(x)2a(ex+)(ex)0,恒成立,当xR,f(x)单调递减,综上可知:当a0时,f(x)在R单调减函数,当a0时,f(x)在(,ln)是减函数,在(ln,+)是增函数;(2)若a0时,由(1)可知:f(x)最多有一个零点,当a0时,f(x)ae2x+(a2)exx,当x时,e2x0,ex0,当x

33、时,f(x)+,当x,e2x+,且远远大于ex和x,当x,f(x)+,函数有两个零点,f(x)的最小值小于0即可,由f(x)在(,ln)是减函数,在(ln,+)是增函数,f(x)minf(ln)a()+(a2)ln0,1ln0,即ln+10,设t,则g(t)lnt+t1,(t0),求导g(t)+1,由g(1)0,t1,解得:0a1,a的取值范围(0,1)方法二:(1)由f(x)ae2x+(a2)exx,求导f(x)2ae2x+(a2)ex1,当a0时,f(x)2ex10,当xR,f(x)单调递减,当a0时,f(x)(2ex+1)(aex1)2a(ex+)(ex),令f(x)0,解得:xlna,

34、当f(x)0,解得:xlna,当f(x)0,解得:xlna,x(,lna)时,f(x)单调递减,x(lna,+)单调递增;当a0时,f(x)2a(ex+)(ex)0,恒成立,当xR,f(x)单调递减,综上可知:当a0时,f(x)在R单调减函数,当a0时,f(x)在(,lna)是减函数,在(lna,+)是增函数;(2)若a0时,由(1)可知:f(x)最多有一个零点,当a0时,由(1)可知:当xlna时,f(x)取得最小值,f(x)minf(lna)1ln,当a1,时,f(lna)0,故f(x)只有一个零点,当a(1,+)时,由1ln0,即f(lna)0,故f(x)没有零点,当a(0,1)时,1l

35、n0,f(lna)0,由f(2)ae4+(a2)e2+22e2+20,故f(x)在(,lna)有一个零点,假设存在正整数n0,满足n0ln(1),则f(n0)(a+a2)n0n0n00,由ln(1)lna,因此在(lna,+)有一个零点a的取值范围(0,1)选修4-4,坐标系与参数方程22(10分)在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a【解答】解:(1)曲线C的参数方程为(为参数),化为标准方程是:+y21;a1时,直线l的参数方程化为一般方程是:x+4y30;联立方程,

36、解得或,所以椭圆C和直线l的交点为(3,0)和(,)(2)l的参数方程(t为参数)化为一般方程是:x+4ya40,椭圆C上的任一点P可以表示成P(3cos,sin),0,2),所以点P到直线l的距离d为:d,满足tan,且的d的最大值为当a40时,即a4时,|5sin(+)a4|5a4|5+a+4|17解得a8和26,a8符合题意当a40时,即a4时|5sin(+)a4|5a4|1a|17,解得a16和18,a16符合题意综上,a8或a16选修4-5:不等式选讲23已知函数f(x)x2+ax+4,g(x)|x+1|+|x1|(1)当a1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围【解答】解:(1)当a1时,f(x)x2+x+4,是开口向下,对称轴为x的二次函数,g(x)|x+1|+|x1|,当x(1,+)时,令x2+x+42x,解得x,g(x)在(1,+)上单调递增,f(x)在(1,+)上单调递减,此时f(x)g(x)的解集为(1,;当x1,1时,g(x)2,f(x)f(1)2当x(,1)时,g(x)单调递减,f(x)单调递增,且g(1)f(1)2综上所述,f(x)g(x)的解集为1,;(2)依题意得:x2+ax+42在1,1恒成立,即x2ax20在1,1恒成立,则只需,解得1a1,故a的取值范围是1,1第27页(共27页)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 其他报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁