20080512高一数学(141正弦函数、余弦函数的图象).ppt

上传人:仙*** 文档编号:23663583 上传时间:2022-07-01 格式:PPT 页数:21 大小:385.51KB
返回 下载 相关 举报
20080512高一数学(141正弦函数、余弦函数的图象).ppt_第1页
第1页 / 共21页
20080512高一数学(141正弦函数、余弦函数的图象).ppt_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《20080512高一数学(141正弦函数、余弦函数的图象).ppt》由会员分享,可在线阅读,更多相关《20080512高一数学(141正弦函数、余弦函数的图象).ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.4 1.4 三角函数的图象与性质三角函数的图象与性质1.4.11.4.1正弦函数、余弦函数的图象正弦函数、余弦函数的图象 2.2.任意给定一个实数任意给定一个实数x x,对应的正弦值,对应的正弦值(sinxsinx)、余弦值)、余弦值(cosx(cosx) )是否存在?惟一?是否存在?惟一?问题提出问题提出t57301p21.1.在单位圆中,角在单位圆中,角的正弦线、余弦线的正弦线、余弦线分别是什么?分别是什么?P P(x x,y y)O Ox xy yMsin=MPcos=OM4.4.一个函数总具有许多基本性质,要直一个函数总具有许多基本性质,要直观、全面了解正、余弦函数的基本特性,观、

2、全面了解正、余弦函数的基本特性,我们应从哪个方面人手?我们应从哪个方面人手?3.3.设实数设实数x x对应的角的正弦值为对应的角的正弦值为y y,则对,则对应关系应关系y=sinxy=sinx就是一个函数,称为就是一个函数,称为正弦正弦函数函数;同样;同样y= cosxy= cosx也是一个函数,称为也是一个函数,称为余弦函数余弦函数,这两个函数的定义域是什么?,这两个函数的定义域是什么?知识探究(一):知识探究(一):正弦函数的图象正弦函数的图象 思考思考1 1:作函数图象最原始的方法是什么?作函数图象最原始的方法是什么?思考思考2 2:用描点法作正弦函数用描点法作正弦函数y=sinxy=s

3、inx在在00,22内的图象,可取哪些点?内的图象,可取哪些点?思考思考3 3:如何在直角坐标系中比较精确地如何在直角坐标系中比较精确地描出这些点,并画出描出这些点,并画出y=sinxy=sinx在在00,22内的图象?内的图象?xy1-1O222p32psin , 0,2yx x思考思考4 4:观察函数观察函数y=sinxy=sinx在在00,22内的内的图象,其形状、位置、凸向等有何变化图象,其形状、位置、凸向等有何变化规律?规律?思考思考5 5:在函数在函数y=sinxy=sinx,x0 x0,22的的图象上,起关键作用的点有哪几个?图象上,起关键作用的点有哪几个?x-1O222p32p

4、1y y思考思考6 6:当当x2x2,4, -24, -2,0,0,时,时,y=sinxy=sinx的图象如何?的图象如何?y-1xO123456-2-3-4-5-6-思考思考7 7:函数函数y=sinxy=sinx,xRxR的图象叫做的图象叫做正正弦曲线弦曲线,正弦曲线的分布有什么特点?,正弦曲线的分布有什么特点?y-1xO123456-2-3-4-5-6-思考思考8 8:你能画出函数你能画出函数y=|sinxy=|sinx| |,x0 x0,22的图象吗?的图象吗?y yx xO O122-1-1知识探究(二):知识探究(二):余弦函数的图象余弦函数的图象 思考思考1 1:观察函数观察函数

5、y=xy=x2 2与与y=(xy=(x1)1)2 2 的图的图象,你能发现这两个函数的图象有什么象,你能发现这两个函数的图象有什么内在联系吗?内在联系吗? x xy yo o-1-1思考思考2 2:一般地,函数一般地,函数y=f(xy=f(xa)(aa)(a0)0)的图象是由函数的图象是由函数y=f(xy=f(x) )的图象经过怎样的图象经过怎样的变换而得到的?的变换而得到的? 向左平移向左平移a a个单位个单位. . 思考思考3 3:设想由正弦函数的图象作出余设想由正弦函数的图象作出余弦函数的图象,那么先要将余弦函数弦函数的图象,那么先要将余弦函数y=cosxy=cosx转化为正弦函数,你可

6、以根据哪转化为正弦函数,你可以根据哪个公式完成这个转化?个公式完成这个转化?思考思考4 4:由诱导公式可知,由诱导公式可知,y=cosxy=cosx与与 是同一个函数,如何作函是同一个函数,如何作函数数 在在00,22内的图象?内的图象?sin ()2yxp=+sin ()2yxp=+xy yO221y=sinxy=sinx22-1-1思考思考5 5:函数函数y=cosxy=cosx,x0 x0,22的图的图象如何?其中起关键作用的点有哪几个?象如何?其中起关键作用的点有哪几个?xy yO22122-1-1思考思考6 6:函数函数y=cosxy=cosx,xRxR的图象叫做的图象叫做余余弦曲线

7、弦曲线,怎样画出余弦曲线,余弦曲线,怎样画出余弦曲线,余弦曲线的分布有什么特点?的分布有什么特点?xyO1-1222222222222理论迁移理论迁移 例例1 1 用用“五点法五点法”画出下列函数的画出下列函数的简图:简图: (1)(1)y=1+sinxy=1+sinx,x0 x0,22; (2)(2)y=-cosxy=-cosx,x0 x0,2 .2 .x xsinxsinx1+sinx1+sinx1 10 02p32pp2p0 00 00 01 1-1-11 12 20 01 1x-1O222p32p1y y2y=1+sinxy=1+sinxx xcosxcosx-cosx-cosx1 1

8、0 02p32pp2p1 10 00 01 1-1-1-1-10 00 0-1-1x-1O222p32p1y yy=-cosxy=-cosx 例例2 2 当当x0 x0,22时,求不等式时,求不等式 的解集的解集. .1cos2x50,233pppUxy yO22122-1-112y=小结作业小结作业1.1.正、余弦函数的图象每相隔正、余弦函数的图象每相隔22个单位个单位重复出现,因此,只要记住它们在重复出现,因此,只要记住它们在00,22内的图象形态,就可以画出正弦曲内的图象形态,就可以画出正弦曲线和余弦曲线线和余弦曲线. .2.2.作与正、余弦函数有关的函数图象,作与正、余弦函数有关的函数图象,是解题的基本要求,用是解题的基本要求,用“五点法五点法”作图作图是常用的方法是常用的方法. .3.3.正、余弦函数的图象不仅是进一步研正、余弦函数的图象不仅是进一步研究函数性质的基础,也是解决有关三角究函数性质的基础,也是解决有关三角函数问题的工具,这是一种数形结合的函数问题的工具,这是一种数形结合的数学思想数学思想. .作业:作业:P34P34练习:练习:2 2 P46 P46习题习题1.4 A1.4 A组组: : 1 1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁