《2022分数除法的教学反思.docx》由会员分享,可在线阅读,更多相关《2022分数除法的教学反思.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022分数除法的教学反思分数除法的教学反思1本节课含两部分内容。第一部分内容是分数除法的意义。第二部分是分数除以整数的计算方法。在教学第二单元分数的乘法时,出现学生对分数乘法的意义理解不够,所以,在进行分数除法的意义教学时,没有匆匆带过,或直接告诉学生,而是由整数除法的意义引入,再引导学生通过改编成一组分数除法题,让学生观察、推理出分数除法的意义。我留给学生时间去做,但还是有部分学生不得其要领。第二部分内容通过例2引导学生用折纸的方法得出两种不同计算方法,再比较、归纳出分数除以整数(0除外)等于分数乘整数的倒数。这部分内容是教学的重点也是难点,所以动手操作是必要的。因为学生的动手操作能力较差
2、,所以学生动手操作的时间花的比较多。大部分学生能理解为什么分数除以整数就是乘这个整数的倒数。但后面的练习就没有时间做了,所以,不值的学生掌握的怎么样,是否能熟练的计算分数除以整数。心有多大,舞台就有多大,所以不要拘束孩子,也不要拘束自己。分数除法的教学反思2一、教材的处理按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题
3、的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。二、运用了体验式教学模式。启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。(2)拓展练习,通过让学生解决较难的此类
4、问题,进一步培养学生分析问题、解决问题的能力。三、关注解决问题的方法指导这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。四、不足之处在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中
5、,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。分数除法的教学反思3分数除法应用题,历来都是教学中的难点,要突破这个难点,让学生透切理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我从以下几方面入手进行组织教学:一、走进生活,体验生活中的数学。本来人体的机体造构对于小学生来说是一个很有趣的问题,教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多人体构造,增加
6、了学生的知识面。二、使学生在学习过程中真正成为学习的主人。教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。三、寻找多种方法,开拓学生思维能力。在解答应用题的时候,我通过鼓励学生尽量找出其它语方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而
7、在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。分数除法的教学反思4这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来34的算理往往被忽视。因此我把重点放在例题2,34=(
8、)(块)的探究上。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了34的算理。在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。分数除法的教学反思5根据教材
9、总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:一、是多出这类练习题进行训练;二、是分析这类题时教给学生一个模式,这
10、个模式是:读题找出已知条件和问题找出已知条件中与问题相同或相关的句子找出单位“1”的数量分析题中相等的数量关系根据数量关系列算式解答.比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:( )2/5( )。好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“”了“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。再结合例题加以说明.(1)有一条鲸全长是21米,头部占
11、二十一分之五,求头部的长度。(2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?帮助学生复习回忆有关解决这一类问题的基本方法。“一找”找出关键句。第(1)题的关键句是:头部占二十一分之五,第(2)题的关键句是:是其中的十六分之五,“二列”帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。第(1)题中的等量关系式是:鲸的全长二十一分之五=头部的长度第(2)题中的等量关系式是:全部米的重量十六分之五=吃掉米的重量“三算”帮助学生根据等量关系式列出算式并完成计算。第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为
12、未知数X.总的来说“分数乘除法解决问题”有6种基本形式:求一个数的几分之几是多少求比一个数多几分之几的数是多少求比一个数少几分之几的数是多少已知一个数的几分之几是多少,求这个数已知比一个数多几分之几的数是多少,求这个数 已知比一个数少几分之几的数是多少,求这个数.分数除法的教学反思6人教版六年级上册第三单元“分数除法应用题”的教学是本册的一个教学重点和难点。很多老师都深感在此处和学生说不清,教学效果不佳。我个人通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下我的一些比较成功的做法。一、加强前后知识之间的联系,实现知识的正迁移。要想第三单元学生学的顺利,第二单元知识的
13、学习一定要铺垫好。一是,一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。二是,能快速地根据题中的关键句判断出谁是单位“1”。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“1”的方法:是“谁”几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“1”。最简单的方法是:分率前面的量就是单位“1”。三是,学生要熟练掌握画线段图的方法。比如要先画单位“1”(因为单位“1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整
14、体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。四是,能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。例:“柳树是杨树的 ”等量关系式:杨树 =柳树“柳树比杨树多 ”等量关系式:杨树+杨树 =柳树 或者 杨树(1+ )=柳树 这样学生在学习用方程解决分数除法应用题时“找等量关系式”就轻松多了。二、教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。比如教学第三单元分数除法“解决问题”例1的时候,就要复习一下学生学习第二单元分数乘法“解决问题”例1的知识,如从关键句中找单位“1”、说出等量关系式等。教
15、学分数除法解决问题例2时,就要对应复习第二单元乘法解决问题例2和例3的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。三、在教师的引导下提高学生读题、分析题的能力。刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:谁与谁相比较?(柳树与杨树相比较)谁是单位“1”?(杨树)多
16、 是多“谁”的 ?(多杨树的 )到底多多少,具体的量怎么算?(杨树 )这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树 =柳树)当然,还有一种等量关系式:杨树(1+ )=柳树 可由以下几个问题入手:柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量对应分率=单位“1”的量)。学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。总之,我通过运用以上的
17、教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。分数除法的教学反思7“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计分数与除法这一课时,从以下两方面考虑:1以解决问题入手,感受分数的价值。从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是
18、借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。2分数意义的拓展与除法之间关系的理解同步。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性
19、的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:1提供丰富的素材,经历“数学化”过程。分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。2问题寓于方法,内容承载思想。数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学
20、思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。分数除法的教学反思8为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁
21、移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。一、关注过程,让学生获得亲身体验。教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏
22、必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实数学课程标准中,“在数学学习
23、活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。二、多角度分析问题,提高能力。在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。四、不仅巩固知识,给不同层次的学生起到不同的教
24、学作用,又能为归纳求“1”的量的应用题的方法奠定基础。分数除法的教学反思9分数与除法的关系教学反思分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,
25、发展了学生的思维能力,达到教学目标,突破了重点和难点。我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间
26、可以训练学生的用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。分数除法的教学反思10应用题的教学无论在乘法还是除法中都是重点中的重点,特别是教学除法时,再对比乘法,学生的思维零乱一下子很清楚看出。到底是用除法还是用乘法来解答,是
27、关键,所以教学时该如何把握每道题的重点,引导学生读题、理解题意是难点。分数乘法及应用中,也就是“求一个数的几分之几是多少?”学生很容易理解,掌握的非常好。而学习的分数除法应用题则是“已知一个数的几分之几是多少,求这个数?”两个问题正好相反,一个是已知“单位1”,一个是要求“单位1”。所以引导学生审题、找关键的句子或者词语,找单位1、画图分析,写出等量关系。课堂上,我让学生读题(至少3遍),找出关键的句子(谁的几分之几是谁),单位就是(几分之几的前面那个词语),这些好像都不难,难的是写出等量关系,特别是一些隐藏的关系,如:“原来的13”,那么隐藏了“实际”的。对于画图也是一个挑战,学生不懂几分之
28、几对应的量,为什么要这样画?在巩固练习中,我有意出一道分数乘法应用题,一道除法应用题,让学生解答,并观察、分析,学生们通过这两道题建立起了表象,对这两种题型及其解法有了进一步的体会。在反复寻找单位1和画图,写出等量关系后,接下来的几道题目中,很多学生都能够独立解答,但一些基础薄弱的学生还存在一定的困难,有待第二课时的再次启发吧!分数除法的教学反思11短短的40分钟的课上完了,但是其中暴露出来的问题却是很多,这从侧面也显现了作为一名新教师的我还是不成熟,仍然有许多地方需要改进。首先,从整体上来说,这堂课还不够完整。一堂课应该由问题引入新课探索巩固练小结布置作业所构成。但是我的这堂课在小结后就匆匆
29、结束了,并且小结进行的也是相当的仓促。显然,在整体布局和时间的分配方面仍需要加强。其次,在这堂课中,或许是学生的紧张,或许是学生的确掌握的不够,导致出现了很多没有预料到的问题。而对于这些问题,我的应变的能力就显的很薄弱,有些问题我不明白该如何的处理,因此只能草草的让其他学生报了正确的答案后囫囵带过而已。而这个问题恰恰是需要自己去着力解决的。学生产生了问题本是展现老师水平的时候,针对错误的答案,可以让学生们讨论“错误的原因”,“正确的该是什么”等等;在措词上也应该尽量避免“对吗?”,“正确吗?”等等看似“疑问”实则否定的话,而应采取“还有其它答案吗?”之类的语句,让其它学生去思考。因此,对于这个
30、问题需要更加详细的备课,更加巩固的考虑再者,在概念的引出之前事实上我只采用了一个例子。但事实上,一个例子,是不具代表性,相反,应采用更多的例子,正例,反例等等,必要时,教师还可以创造一些错误的题目来让学生判断。而其最终的目的是为了让学生更清晰,更透彻的理解这个概念,方便学生最后自己概括出概念。因此,张波老师也建议将概念后面的巩固练习提上来,放在概念形成之前,作为辨析进行。另外,在课堂上,学生应该是主体,教师只是作为引导。我们需要把更多的时间交给学生,让他们去思考,去讨论,让学生通过老师设计好的有层次的阶梯一步一步自己发现,自己解决问题,让学生真正的“做数学”。而不是老师灌输学生接受。这是一堂非
31、常具有教育意义的课,课堂上暴露了相当多的问题,其他老师也给我指出了各种有效的改进方法。相信通过这次机会我会得到很大的进步。分数除法的教学反思12(看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论于华静
32、)最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:1、一找、二看、三判断分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判
33、断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。2、弄清对应量、对应分数、单位1教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位1”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”对应分数=对应量,所以单位“1”=对应量对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1(
34、或)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。3、线段图、数量关系、关系转化(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求
35、出题目中的问题,找到解决问题的方向。这一点必须教会给学生。(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。分数除法的教学反思13本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示
36、两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。成功之处:夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分
37、得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数除数=被除数/除数,不足之处:学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。改进措施:1.加强求一个数是另一个数的几分之几的列式训练。2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示
38、实际数量。分数除法的教学反思14分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。让学生理解题中的数量关系是解决分数除法应用题的关键。教学中
39、,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。在学生掌握了用方程解决问题的方法后
40、,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。分数除法的教学反思15教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题34时,全班不假思索不屑一顾的脱口而出四分之三,而当我
41、问出为什么时,他们甚至不愿意去思考,仿佛我问的这个为什么简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。授人以鱼,不如授人以渔。我接着说,大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我
42、铺好的探究之旅。一、通过操作,感悟算理。我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。方法(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证34用分数四分之三来表示结果。
43、还有学生想出了方法(三):3除以4得0.75,0.75化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。二、再次说理,悟出关系。在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:
44、除法是一种运算,而分数是一种数。三、对比练习,深化知识。出示:把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。把三块饼平均分给7个小朋友,每人分得几分之几块。让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位1平均分成几份,每份就是单位1的几分之一,是份数与单位1的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以渔永远比授生以鱼来的重要的多!作者简介刘璐,中国共产党党员,大学本科学历,艳梅名师工作室研修员。20xx年参加工作至今,一直担任小学数学教学工作。多次参加教学比武,分获市特等奖,县特等奖,县一等奖。数次被评为乡优秀教师,获县嘉奖。20xx年一师一优课获部级优课。坚持用爱和知识去呵护每一位学生,期待每个课堂都能充满童真.