《六年级下册数学试题-典型应用题精讲宝典6-人教新课标(2014秋)(含答案解析).docx》由会员分享,可在线阅读,更多相关《六年级下册数学试题-典型应用题精讲宝典6-人教新课标(2014秋)(含答案解析).docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学数学典型应用题精讲宝典21 方阵问题【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。【数量关系】 (1)方阵每边人数与四周人数的关系: 四周人数(每边人数1)4 每边人数四周人数41(2)方阵总人数的求法:实心方阵:总人数每边人数每边人数空心方阵:总人数(外边人数)(内边人数) 内边人数外边人数层数2(3)若将空心方阵分成四个相等的矩形计算,则: 总人数(每边人数层数)层数4【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。例1 在育才小学的运动会上,
2、进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解 2222484(人) 答:参加体操表演的同学一共有484人。例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。解 10*10(1032)*(1032)84(人) 答:全方阵84人。例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?解 (1)中空方阵外层每边人数524114(人) (2)中空方阵内层每边人数28416(人) (3)中空方阵的总人数141466160(人)答:这队学生共160人。例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,
3、则缺少9只棋子,问有棋子多少个?解 (1)纵横方向各增加一层所需棋子数4913(只) (2)纵横增加一层后正方形每边棋子数(131)27(只) (3)原有棋子数77940(只)答:棋子有40只。例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?解 第一种方法: 1234515(棵)第二种方法: (51)5215(棵)答:这个三角形树林一共有15棵树。22 商品利润问题【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。【数量关系】 利润售价进货价 利润率(售价进货价)进货价100% 售价
4、进货价(1利润率) 亏损进货价售价 亏损率(进货价售价)进货价100%【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?解 设这种商品的原价为1,则一月份售价为(110%),二月份的售价为(110%)(110%),所以二月份售价比原价下降了1(110%)(110%)1%答:二月份比原价下降了1%。例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?解 要知亏还是盈,得知实
5、际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(5280%)元;又因为原价是按期望盈利30%定的,所以成本为 5280%(130%)50(元)可以看出该店是盈利的,盈利率为 (5250)504%答:该店是盈利的,盈利率是4%。例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25(140%),所以关键是求出剩下的每册的实际售价,为此要知道
6、剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即0.25120040%86%0.25120040%80%7.20(元)剩下的作业本每册盈利 7.201200(180%)0.03(元)又可知 (0.250.03)0.25(140%)80%答:剩下的作业本是按原定价的八折出售的。例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。解 设乙店的进货价为1,则甲店的进货价为 110%0.9甲店定价为 0.9(130%)1.17乙店定价为 1(120%)1.20
7、由此可得 乙店进货价为 6(1.201.17)200(元)乙店定价为 2001.2240(元)答:乙店的定价是240元。23 存款利率问题【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。【数量关系】 年(月)利率利息本金存款年(月)数100% 利息本金存款年(月)数年(月)利率 本利和本金利息 本金1年(月)利率存款年(月)数【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 李大强存入银行1200元,月利率0.8
8、%,到期后连本带利共取出1488元,求存款期多长。解 因为存款期内的总利息是(14881200)元,所以总利率为 (14881200)1200 又因为已知月利率,所以存款月数为 (14881200)12000.8%30(月)答:李大强的存款期是30月即两年半。例2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?解 甲的总利息100007.92%210000(17.92%2)8.28%3 1584115848.28%34461.47(元
9、)乙的总利息 100009%54500(元) 45004461.4738.53(元)答:乙的收益较多,乙比甲多38.53元。24 溶液浓度问题【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。【数量关系】 溶液溶剂溶质 浓度溶质溶液100%【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把
10、它变成30%的糖水,需加糖多少克?解 (1)需要加水多少克? 5016%10%5030(克) (2)需要加糖多少克? 50(116%)(130%)5010(克)答:(1)需要加水30克,(2)需要加糖10克。例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?解 假设全用30%的糖水溶液,那么含糖量就会多出 600(30%25%)30(克)这是因为30%的糖水多用了。于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。这样,每“换掉”100克,就会减少糖 100(30%15%)15(克) 所以需要“换掉”
11、30%的溶液(即“换上”15%的溶液) 100(3015)200(克)由此可知,需要15%的溶液200克。需要30%的溶液 600200400(克)答:需要15%的糖水溶液200克,需要30%的糖水400克。例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。解 由条件知,倒了三次后,甲乙两容器中溶液重量相等,各为500克,因此,只要算出乙容器中最后的含盐量,便会知所求的浓度。下面列表推算:甲容器乙容器原 有盐水500盐50012%60水500第一次把甲中一半倒入乙中后盐水5002250盐60230盐水500250750盐30第而次把乙中一半倒入甲中后盐水250375625盐301545盐水7502375盐30215第三次使甲乙中盐水同样多盐水500盐45936盐水500盐45361524由以上推算可知,乙容器中最后盐水的百分比浓度为 245004.8%答:乙容器中最后的百分比浓度是4.8%。