《高一上册数学必修五复习知识点.docx》由会员分享,可在线阅读,更多相关《高一上册数学必修五复习知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Word高一上册数学必修五复习知识点 【导语】高一新生要依据自己的条件,以及高中阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,找寻一套行之有效的学习方法。今日为各位同学整理了高一上册数学必修五复习学问点,盼望对您的学习有所关心! 1.高一上册数学必修五复习学问点 正棱锥的定义: 假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: 各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 多个特别的直角三角形 esp: a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影
2、为底面三角形的垂心。 b、四周体中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。 2.高一上册数学必修五复习学问点 (1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个明显的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分
3、别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)明显指数函数XX。 3.高一上册数学必修五复习学问点 1.多面体的结构特征 (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。 正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。 (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。 正棱锥:底面是正多边形,顶点在底面的射影
4、是底面正多边形的中心的棱锥叫做正棱锥.特殊地,各棱均相等的正三棱锥叫正四周体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。 (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相像多边形。 2.旋转体的结构特征 (1)圆柱可以由矩形绕一边所在直线旋转一周得到。 (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。 (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。 (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。 3.空间几何体的三视图 空间几何体的三视图是用平行投影
5、得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的外形和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。 三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要留意实、虚线的画法。 4.高一上册数学必修五复习学问点 1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、a边长,S6a2,Va3 4、长方体a长,b宽,c高S
6、2(ab+ac+bc)Vabc 5、棱柱Sh高VSh 6、棱锥Sh高VSh/3 7、S1和S2上、下h高VhS1+S2+(S1S2)1/2/3 8、S1上底面积,S2下底面积,S0中h高,Vh(S1+S2+4S0)/6 9、圆柱r底半径,h高,C底面周长S底底面积,S侧,S表表面积C2rS底r2,S侧Ch,S表Ch+2S底,VS底hr2h 10、空心圆柱R外圆半径,r内圆半径h高Vh(R2-r2) 11、r底半径h高Vr2h/3 12、r上底半径,R下底半径,h高Vh(R2Rrr2)/313、球r半径d直径V4/3r3d3/6 14、球缺h球缺高,r球半径,a球缺底半径Vh(3a2+h2)/6
7、h2(3r-h)/3 15、球台r1和r2球台上、下底半径h高Vh3(r12r22)+h2/6 16、圆环体R环体半径D环体直径r环体截面半径d环体截面直径V22Rr22Dd2/4 17、桶状体D桶腹直径d桶底直径h桶高Vh(2D2d2)/12,(母线是圆弧形,圆心是桶的中心)Vh(2D2Dd3d2/4)/15(母线是抛物线形) 5.高一上册数学必修五复习学问点 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 直线在平面内有很多个公共点 直线和平面相交有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量
8、法(找平面的法向量) 规定: a、直线与平面垂直时,所成的角为直角, b、直线与平面平行或在平面内,所成的角为0角 由此得直线和平面所成角的取值范围为0,90 最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面相互垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。 直线和平面平行没有公共点 直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 6