《高一数学必修五知识点整理.docx》由会员分享,可在线阅读,更多相关《高一数学必修五知识点整理.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Word高一数学必修五知识点整理 【导语】全部的人都是凡人,但全部的人都不甘于平凡。我们肯定要信任自己,只要艰苦努力,奋勉进取,在无望中也能查找到盼望,平凡的人生终将会发出刺眼的光线。高一频道为各位同学整理了高一数学必修五学问点整理,盼望对你有所关心! 1.高一数学必修五学问点整理 1、空间几何体公式学问点直棱柱和正棱锥的表面积 设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式: S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、 正棱锥的侧面绽开图是一些全等的等腰三角形、底面是正多边形、 假如设它的底面边长为a、底面周长为c、斜高为h、则得到正n棱锥的侧面积计算公式 S=
2、1/2*nah=1/2*ch、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、 2、空间几何体公式学问点正棱台的表面积 正棱台的侧面绽开图是一些全等的等腰梯形、 设棱台下底面边长为a、周长为c、上底面边长为a、周长为c、斜高为h则得到正n棱台的侧面积公式:S=1/2*n(a+a)h=1/2(c+c)h、 3、空间几何体公式学问点球的表面积 S=4R2、即球面面积等于它的大圆面积的四倍、 4.空间几何体公式学问点圆台的表面积 圆台的侧面绽开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即 S=(r2+r2+rl+rl) 空间几何体公式学问点空间几何体体积计算公式 1、长方
3、体体积 V=abc=Sh 2、柱体体积 全部柱体 V=Sh、即柱体的体积等于它的底面积S和高h的积、 圆柱 V=r2h、 3、棱锥 V=1/3*Sh 4、圆锥 V=1/3*r2h 5、棱台V=1/3*h(S+(SS)+S) 6、圆台 V=1/3*h(r2+rr+r2) 7、球 V=4/3*R3 2.高一数学必修五学问点整理 直线和平面垂直 直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面相互垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面
4、垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点 直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 3.高一数学必修五学问点整理 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平
5、行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为(0,90)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点相交直线; (2)没有公共点平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 直线在平面内有很多个公共点 直线和平面相交有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 空间向量法(找平面的法向量) 规定: a、直线与平面垂直
6、时,所成的角为直角, b、直线与平面平行或在平面内,所成的角为0角 由此得直线和平面所成角的取值范围为0,90 最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 4.高一数学必修五学问点整理 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并讨论这些量间的相互制约关系,最终解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤: (1)依据题意建立变量之间的函数关系式,把问题转化为相应的函数问题; (
7、2)依据需要构造函数,利用函数的相关学问解决问题; (3)方程思想:在某变化过程中,往往需要依据一些要求,确定某些变量的值,这时经常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着亲密联系的数学概念,它们之间相互渗透,许多方程的问题需要用函数的学问和方法解决,许多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 5.高一数学必修五学问点整理 幂函数 定义 形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域 当a为不同的数值时,幂函数的定义域的不怜悯况如
8、下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质 对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排解了为0与负数两种可能,即对于x0,则a可以是任意实数; 排解了为0这种可能,即对于x0的全部实数,q不能是偶数; 排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 7