《人教版数学立体几何知识点(立体几何所有知识点).docx》由会员分享,可在线阅读,更多相关《人教版数学立体几何知识点(立体几何所有知识点).docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Word人教版数学立体几何知识点(立体几何所有知识点) 下面是我整理的人教版数学立体几何学问点(立体几何全部学问点),供大家参考。 想要学好数学,肯定要多看例题,在看例题的过程中,大脑会将已有概念详细化,使对学问的理解更深刻,更透彻。下面是我整理的人教版数学立体几何学问点,仅供参考盼望能够关心到大家。 人教版数学立体几何学问点 立体几何初步 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何
2、特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几
3、何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转
4、轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。 数学起源 数学,古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义“数学讨论”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 在中国古代,数学叫作算术,又称算学,最终才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。 数学起源于人类早期的生产活动,古巴比伦人从远古时代开头已经积累了肯定的数学学问,并能应用实际问题.从数学本身看,他们的数学学问也只是观看和阅历所得,没有综合结论和证明,但也要充分确定他们对数学所做出的贡献。 数学判定与性质区分 性质是从客观角度认知事物的形式,事物本身所具有的与其他事物不同的根本属性。性质是指从数学概念直接推导得出的运算法则或者运算公式等延长的学问。判定多用于数学的证明概念,通过事物的本质属性反映出的本质性质,以此作为依据推知下一步结论。 4