初中一年级数学公式总结.docx

上传人:wj151****6093 文档编号:23438512 上传时间:2022-06-30 格式:DOCX 页数:19 大小:34.09KB
返回 下载 相关 举报
初中一年级数学公式总结.docx_第1页
第1页 / 共19页
初中一年级数学公式总结.docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《初中一年级数学公式总结.docx》由会员分享,可在线阅读,更多相关《初中一年级数学公式总结.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中一年级数学公式总结 初中一年级数学公式总结(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1因式分解时,各项假如有公因式应先提公因式,再进一步分解。2因式分解,必需进行到每一个多项

2、式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是这两个数的积的两倍。(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单

3、项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能接着分解,所以原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b

4、)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先视察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设协助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,干脆提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或变更符号,直到可确定多项式的公因式2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要留意:1必需先将常数项分解成

5、两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满意要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能状况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分4.分式约分中留意正确运用乘方的符号法则,如x-y-(y-x),

6、(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简洁的分式之分子分母可干脆乘方6留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变3一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运

7、算作打算4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减

8、运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先视察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最终结果,假如是分式则应当是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母

9、的式子去乘或除方程的两边,这个式子的值不能等于零。1.分式2.二次根式3.三角形4.一次函数5.四边形6.相像7.简洁概率统计(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1因式分解

10、时,各项假如有公因式应先提公因式,再进一步分解。2因式分解,必需进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是这两个数的积的两倍。(3)当多项式中

11、有公因式时,应当先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能接着分解,所以

12、原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先视察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设协助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,干脆提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或变更符号,直到可确定多项式的公因式2.运用公式x2+(

13、p+q)x+pq=(x+q)(x+p)进行因式分解要留意:1必需先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满意要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能状况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中

14、的某些项单独约分4.分式约分中留意正确运用乘方的符号法则,如x-y-(y-x),(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简洁的分式之分子分母可干脆乘方6留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变3一般

15、地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作打算4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9同分母分式相加减,分母不变,只须将分

16、子作加减运算,但留意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先视察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最终结果,假如是分式则应当是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的

17、方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。扩展阅读:初中一年级数学公式总结(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是

18、平方差公式。(三)因式分解1因式分解时,各项假如有公因式应先提公因式,再进一步分解。2因式分解,必需进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是

19、这两个数的积的两倍。(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因

20、式(m+n),因此还能接着分解,所以原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先视察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设协助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,干脆提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或变更符号,直到可确

21、定多项式的公因式2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要留意:1必需先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满意要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能状况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式假如分子或分母中的多项式不

22、能分解因式,此时就不能把分子、分母中的某些项单独约分4.分式约分中留意正确运用乘方的符号法则,如x-y-(y-x),(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简洁的分式之分子分母可干脆乘方6留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变

23、形,其共同点是保持分式的值不变3一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作打算4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9

24、同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先视察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最终结果,假如是分式则应当是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字

25、母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。1.分式2.二次根式3.三角形4.一次函数5.四边形6.相像7.简洁概率统计(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-

26、b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1因式分解时,各项假如有公因式应先提公因式,再进一步分解。2因式分解,必需进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全

27、平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是这两个数的积的两倍。(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做

28、到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能接着分解,所以原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先视察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设协助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,干脆提取公因式;

29、当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或变更符号,直到可确定多项式的公因式2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要留意:1必需先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满意要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能状况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.假如分式的分子或分母是多项式,可先考虑把它分

30、别分解因式,得到因式乘积形式,再约去分子与分母的公因式假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分4.分式约分中留意正确运用乘方的符号法则,如x-y-(y-x),(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简洁的分式之分子分母可干脆乘方6留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分

31、是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变3一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作打算4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异

32、分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先视察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最终结果,假如是分式则应当是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用

33、字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。友情提示:本文中关于初中一年级数学公式总结给出的范例仅供您参考拓展思维运用,初中一年级数学公式总结:该篇文章建议您自主创作。 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第19页 共19页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页第 19 页 共 19 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁