《13陈焱三角函数的诱导公式第一课时.ppt》由会员分享,可在线阅读,更多相关《13陈焱三角函数的诱导公式第一课时.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.3 三角函数的诱导公式 第一课时复习回顾复习回顾1.1.任意角任意角的正弦、余弦、正切是怎样的正弦、余弦、正切是怎样定义的?定义的?的终边的终边P(xP(x,y)y)O Ox xy ysinycosxtan(0)yxx2. 2k2. 2k(kZkZ)与)与的三角函数的三角函数之间的关系是什么?之间的关系是什么?公式一:公式一: sin(2)sinkcos(2)cosktan(2)tankkZ( )3.3.你能求你能求sin750sin750和和sin930sin930的值吗?的值吗?4.4.利用公式一,可将任意角的三角函数利用公式一,可将任意角的三角函数值,转化为值,转化为0 00 036
2、03600 0范围内的三角函数范围内的三角函数值值. .其中锐角的三角函数可以查表计算,其中锐角的三角函数可以查表计算,而对于而对于90900 03603600 0范围内的三角函数值,范围内的三角函数值,如何转化为锐角的三角函数值,是我们如何转化为锐角的三角函数值,是我们需要研究和解决的问题需要研究和解决的问题. .的终边的终边xy yo o+的终边的终边思考思考1 1:对于任意给定的一个角对于任意给定的一个角,角,角的终边与角的终边与角的终边有什么关系?的终边有什么关系?知识探究(一):知识探究(一):的诱导公式的诱导公式 思考思考2 2:设角设角的终边与单位圆交于点的终边与单位圆交于点P
3、P(x x,y y),则角),则角的终边与单位圆的终边与单位圆的交点坐标如何?的交点坐标如何?的终边的终边xy yo o+的终边的终边P(xP(x,y)y)Q(-xQ(-x,-y)-y)思考思考3 3:根据三角函数定义,根据三角函数定义,sinsin() 、coscos()、)、tantan()的值分别是什么?)的值分别是什么?的终边的终边xy yo o+的终边的终边P(xP(x,y)y)Q(-xQ(-x,-y)-y)sin(sin()=-y)=-ycos(cos()=-x)=-xtan(tan()=)=yx思考思考4 4:对比对比sinsin,coscos,tantan的值,的值,的三角函数
4、与的三角函数与的三角函数有什的三角函数有什么关系?么关系?思考思考5 5:该公式有什么特点,如何记忆?该公式有什么特点,如何记忆? 公式二:公式二: tan)tan(cos)cos(sin)sin(知识探究(二):知识探究(二):-,-的诱导公式:的诱导公式: 思考思考1 1:对于任意给定的一个角对于任意给定的一个角,的终边与的终边与的终边有什么关系?的终边有什么关系? y y的终边的终边xo o- -的终边的终边思考思考2 2:设角设角的终边与单位圆交于点的终边与单位圆交于点 P P(x x,y y),则),则的终边与单位圆的交的终边与单位圆的交点坐标如何?点坐标如何?y y的终边的终边xo
5、 o- -的终边的终边P(x,yP(x,y) )Q(x,-yQ(x,-y) ) 公式三:公式三: tan)tan(cos)cos(sin)sin(思考思考3 3:根据三角函数定义,根据三角函数定义,的三角的三角函数与函数与的三角函数有什么关系?的三角函数有什么关系?y y的终边的终边xo o- -的终边的终边P(x,yP(x,y) )P(x,-yP(x,-y) )思考思考4 4:利用利用( (),结,结合公式二、三,你能得到什么结论?合公式二、三,你能得到什么结论? 公式四:公式四: tan)tan(cos)cos(sin)sin(思考思考5 5:如何根据三角函数定义推导公式如何根据三角函数定
6、义推导公式四?四?- -的终边的终边y y的终边的终边xo oP(x,yP(x,y) )P(-x,yP(-x,y) )-的终边的终边思考思考6 6:公式三、四有什么特点,如何记公式三、四有什么特点,如何记忆?忆? 公式三:公式三: tan)tan(cos)cos(sin)sin( 公式四:公式四: tan)tan(cos)cos(sin)sin(2k2k(kZkZ),), ,的三角函数值,等于的三角函数值,等于的同名函数的同名函数值,前面加上一个把值,前面加上一个把看成锐角时原函看成锐角时原函数值的符号数值的符号. . 思考思考7 7:公式一四都叫做诱导公式,他公式一四都叫做诱导公式,他们分别
7、反映了们分别反映了2k2k(kZkZ),),的三角函数与的三角函数与的三角的三角函数之间的关系,你能概括一下这四组函数之间的关系,你能概括一下这四组公式的共同特点和规律吗?公式的共同特点和规律吗? 函数名不变,符号看象限!理论迁移理论迁移例例1 1 求下列各三角函数的值:求下列各三角函数的值:cos225) 1 (311sin)2()316sin(-)3()cos(-2040)4(31 例例2 2 已知已知cos(cos(x x) ) ,求下列,求下列各式的值:各式的值:(1 1)cos(2cos(2x x) );(;(2 2)cos(cos(x x).). 例例3 3 化简:化简:(1 1)
8、 ;(2 2) .cos(180) sin(360 )sin(- -180 ) cos(-180 - )tan585)cos(-350)210(sincos1902.2.以诱导公式一四为基础,还可以以诱导公式一四为基础,还可以产生一些派生公式,产生一些派生公式,如如sinsin(22)= =sinsin, sinsin(33)=sin=sin等等. .小结作业小结作业1.1.诱导公式都是恒等式,即在等式有意诱导公式都是恒等式,即在等式有意义时恒成立义时恒成立. .3.3.利用诱导公式一四,可以求任意利用诱导公式一四,可以求任意角的三角函数,其基本思路是:角的三角函数,其基本思路是:这是一种化归与转化的数学思想这是一种化归与转化的数学思想. .任意负角的任意负角的三角函数三角函数任意正角的任意正角的三角函数三角函数0 022的角的角的三角函数的三角函数锐角的三角锐角的三角函数函数 作业:作业: P27P27练习:练习:1 1,2 2,3 3,4.4.