《初三数学课的教学教案精编.docx》由会员分享,可在线阅读,更多相关《初三数学课的教学教案精编.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初三数学课的教学教案初三数学课的教学教案1 教学目标: 1、理解切线的判定定理,并学会运用。 2、知道判定切线常用的方法有两种,初步驾驭方法的选择。 教学重点:切线的判定定理和切线判定的方法。 教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生起先时驾驭不好并极简单忽视一. 教学过程: 一、复习提问 问题1.怎样过直线l上一点P作已知直线的垂线? 问题2.直线和圆有几种位置关系? 问题3.如何判定直线l是O的切线? 启发:(1)直线l和O的公共点有几个? (2)圆心O到直线L的距离与半径的数量关系 如何? 学生答完后,老师强调(2)是判定直线 l
2、是O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示) 再启发:若把距离OA理解为 OAl,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题) 二、引入新课内容 命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。 证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。 定理:经过半径外端并且垂直于这条半径的直线是圆的切线. 定理的证明:已知:直线l经过半径OA的外端点A,直线lOA, 求证:直线l是O的切线 证明:略 定理
3、的符号语言:直线lOA,直线l经过半径OA的外端A 直线l为O的切线。 是非题: (1)垂直于圆的半径的直线肯定是这个圆的切线。 ( ) (2)过圆的半径的外端的直线肯定是这个圆的切线。 ( ) 三、例题讲解 例1、已知:直线AB经过O上的点C,并且OA=OB,CA=CB。 求证:直线AB是O的切线。 引导学生分析:由于AB过O上的点C,所以连结OC,只要证明ABOC即可。 证明:连结OC. OA=OB,CA=CB, ABOC 又直线AB经过半径OC的外端C 直线AB是O的切线。 练习1、如图,已知O的半径为R,直线AB经过O上的点A,并且AB=R,OBA=45。求证:直线AB是O的切线。 练
4、习2、如图,已知AB为O的直径,C为O上一点,ADCD于点D,AC平分BAD。 求证:CD是O的切线。 例2、如图,已知AB是O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使ADE=30。 求证:DE是O的切线。 思索题:在RtABC中,B=90,A的平分线交BC于D,以D为圆心,BD为半径作圆,问D的切线有几条?是哪几条?为什么? 四、小结 1.切线的判定定理。 2.判定一条直线是圆的切线的方法: 定义:直线和圆有公共点。 数量关系:直线到圆心的距离等于该圆半径(即d = r)。 切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。 3.证明一条直线是圆的切线的协
5、助线和证法规律。 凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是连结圆心和公共点,证明垂直(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。 五、布置作业 切线的判定教后体会 本课例切线的判定作为市考试院调研课型兼区级研讨课,我以“老师为引导,学生为主体”的二期课改的理念动身,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对学问有一个本质的、有效的理解。本节课切实反映了平常的教学状况,为前来调研和研讨的老师供应了真
6、实的样本。反思本节课,有以下几个胜利与不足之处: 胜利之处: 一、 教材的二度设计顺应了学生的认知规律 这批学生习惯于单一学问点的学习,即得出一个学问点,必需由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的爱好和信念。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为其次课时,学生往往会因第一时间得不到刚好的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在仿照层次上,接受实力薄弱的学生更是因学问点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课
7、时,切线的性质定理以及两个定理的综合运用作为其次课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个按部就班、温过知新的过程。从学生的反馈状况推断,教学效果较为志向。 二、重视学生数感的培育呼应了课改的理念 数感类似与语感、乐感、美感,拥有了感觉,学问便会融会贯穿,学习就会轻松。拥有数感,不仅会对数学学问反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由老师诱导,学生发觉完成的,而三个习题则完全放手让学生去思索完成,不乏有不会做和做得困难的学生,但在展示和沟通中,撞击出思
8、维的火花,难以忘怀。让学生尝试总结规律,也是对学生实力的培育,在本节课中,协助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达实力。通过思索得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。 不足之处: 一、这节课没有“高潮”,没有让学生特殊兴奋激起求知欲的情境,整个教学过程是在一个安静、和谐的氛围中完成的。 二、课的引入太直截了当,脱离不了应试教学的味道。 三、教学风格的定势使所授学问不能很合理地与生活实际相联系,肯定程度上阻碍了学生解决实际问题实力的发展。 通过本节课的教学,我深刻感悟到在教学实践中,老师要不断地充溢自己,拓宽学问面,努力突破已有的教
9、学形态,适应现代教化,适应现代学生。课堂教学中,敢于试验,舍得放手,尽量培育学生主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发觉,学问让学生自己去获得,老师只供应给学生现实情境、足够的思索时间和活动空间,给学生表现自我的机会和胜利的体验,培育学生的自我意识,发挥学生的主体作用,来真正实现数学课程标准中提出的“学生是数学学习的主子,老师是数学学习的组织者、引导者与合作者”这一教学理念。 初三数学课的教学教案2 一、素养教化目标 (一)学问教学点 使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. (二)实力训练点 逐步培育学生视察、比较、分析、综合
10、、抽象、概括的逻辑思维实力. (三)德育渗透点 培育学生独立思索、勇于创新的精神. 二、教学重点、难点 1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用. 2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用. 三、教学步骤 (一)明确目标 1.复习提问 (1)、什么是A的正弦、什么是A的余弦,结合图形请学生回答.因为正弦、余弦的概念是探讨本课内容的学问基础,请中下学生回答,从中可以了解教学班还有多少人不清晰的,可以实行适当的补救措施. (2)请同学们回忆30、45、60角的正、余弦值(老师板书). (3)请同学们视察,从中发觉什么特
11、征?学生肯定会回答“sin30=cos60,sin45=cos45,sin60=cos30,这三个角的正弦值等于它们余角的余弦值”. 2.导入新课 依据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题. (二)、整体感知 关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30、45、60角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章
12、,这两个关系式的用处仅仅限于查表和计算,而不是证明. (三)重点、难点的学习和目标完成过程 1.通过复习特别角的三角函数值,引导学生视察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热忱,使学生的思维主动活跃. 2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此老师应进一步引导:sinA=cos(90-A),cosA=sin(90-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,老师要给学生足够的探讨解决问题的时间,以培育学生逻辑思维实力及独立思索、勇于创新的精神. 3.老师板
13、书: 随意锐角的正弦值等于它的余角的余弦值;随意锐角的余弦值等于它的余角的正弦值. sinA=cos(90-A),cosA=sin(90-A). 4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不娴熟,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固. 已知A和B都是锐角, (1)把cos(90-A)写成A的正弦. (2)把sin(90-A)写成A的余弦. 这一练习只能起到巩固定理的作用.为了运用定理,教材支配了例3. (2)已知sin35=0.5736,求cos55; (3)已知cos476=0
14、.6807,求sin4254. (1)问比较简洁,比照定理,学生马上可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出B与A互余,(2)、(3)让学生自己发觉35与55的角,476分4254的角互余,从而依据定理得出答案,因此(2)、(3)问在课堂上应当请基础好一些的同学讲清思维过程,便于全体学生驾驭,在三个问题处理完之后,将题目变形: (2)已知sin35=0.5736,则cos_=0.5736. (3)cos476=0.6807,则sin_=0.6807,以培育学生思维实力. 为了协作例3的教学,教材中配备了练习题2. (2)已知sin6718=0.9225,求cos2242;
15、 (3)已知cos424=0.9971,求sin8536. 学生独立完成练习2,就说明定理的教学较胜利,学生基本会运用. 教材中3的设置,事实上是对前二节课内容的综合运用,既考察学生正、余弦概念的驾驭程度,同时又对本课学问加以巩固练习,因此例3的支配恰到好处.同时,做例3也为下一节查正余弦表做了打算. (四)小结与扩展 1.请学生做学问小结,使学生对所学内容进行归纳总结,将所学内容变成自己学问的组成部分. 2.本节课我们由特别角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:随意一个锐角的正弦值等于它的余角的余弦值,随意一个锐角的余弦值等于它的余角的正弦值. 四
16、、布置作业 教材习题14.1A组4、5. 五、板书设计 初三数学课的教学教案3 1、教材分析 (1)学问结构 (2)重点、难点分析 重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一. 难点:难点是“接”与“切”的含义,学生简单混淆;画三角形内切圆,学生不易画好. 2、教学建议 本节内容须要一个课时. (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质; (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学. 教学目标 : 1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念
17、; 2、应用类比的数学思想方法探讨内切圆,逐步培育学生的探讨问题实力; 3、激发学生动手、动脑主动参加课堂教学活动. 教学重点: 三角形内切圆的作法和三角形的内心与性质. 教学难点 : 三角形内切圆的作法和三角形的内心与性质. 教学活动设计 (一)提出问题 1、提出问题:如图,你能否在ABC中画出一个圆?画出一个的圆?想一想,怎样画? 2、分析、探讨问题: 让学生动脑筋、想方法,使学生相识作三角形内切圆的实际意义. 3、解决问题: 例1 作圆,使它和已知三角形的各边都相切. 引导学生结合图,写出已知、求作,然后师生共同分析,找寻作法. 提出以下几个问题进行探讨: 作圆的关键是什么? 假设I是所
18、求作的圆,I和三角形三边都相切,圆心I应满意什么条件? 这样的点I应在什么位置? 圆心I确定后半径如何找. A层学生自己用直尺圆规精确作图,并叙述作法;B层学生在老师指导下完成. 完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个. (二)类比联想,学习新学问. 1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2、类比: 名称 确定方法 图形 性质 外心(三角形外接圆的圆心) 三角形三边中垂线的交点 (1)OA=OB=OC; (2)外心不肯定在三角形的内部. 内心(三角形内切圆的圆心) 三角形三条角平分
19、线的交点 (1)到三边的距离相等; (2)OA、OB、OC分别平分BAC、ABC、ACB; (3)内心在三角形内部. 3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 4、概念理解: 引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”. (三)应用与反思 例2 如图,在ABC中,ABC=50,ACB=75,点O是三角形的内心. 求BOC的度数
20、 分析:要求BOC的度数,只要求出OBC和0CB的度数之和就可,即求l十3的度数.因为O是ABC的内心,所以OB和OC分别为ABC和BCA的平分线,于是有1十3= (ABC十ACB),再由三角形的内角和定理易求出BOC的度数. 解:(引导学生分析,写出解题过程) 例3 如图,ABC中,E是内心,A的平分线和ABC的外接圆相交于点D 求证:DE=DB 分析:从条件想,E是内心,则E在A的平分线上,同时也在ABC的平分线上,考虑连结BE,得出3=4. 从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法. 证明:连结BE. E是ABC的内心 又1=2 1=2 1
21、+3=4+5 BED=EBD DE=DB 练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内. (四)小结 1.老师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该留意哪些问题? 2.学生回答的基础上,归纳总结: (1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念. (2)利用作三角形的内角平分线,随意两条角平分线的交点就是内切圆的圆心,交点到随意一边的距离是圆的半径. (3)在学习有关概念时,应留意区分“内”与“外”,“接”与“切”;还应留意“连结内心和三角形顶点”这一协助线的添加和应用. (五)作业 教
22、材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题. 探究活动 问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,B=90. (1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm); (2)计算出的圆形纸片的半径(要求精确值). 提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心: 如图2,以AC为轴对折;对折ABC,折线交AC于O;使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径. (2)如图3,设内切圆的半径为r,则通过面积可得:6
23、r+8r=48,r=. 初三数学课的教学教案4 教学目标 1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性相识。 2、理解一元二次方程的定义,能识别一元二次方程。 3、知道一元二次方程的一般形式,能娴熟地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。 重点难点 重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。 难点:把实际问题转化为一元二次方程的模型。 教学过程 (一)创设情境 前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将接着进行建立方程模型的探
24、究。 1、展示课本P.2问题一 引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。 (35-2x)2=900 2、展示课本P.2问题二 引导思索:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时辰表示他们各自行驶的路程? 通过思索上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程 2t+0.01t2=3t 3、能把,化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生绽开探讨,并引导学生把,化成下列形式: 4x2-140x+32 0.01t2-2t=0 (二)探究新知
25、1、视察上述方程和,启发学生归纳得出: 假如一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是: ax2+bx+c=0,(a,b,c是已知数且a0), 其中a,b,c分别叫作二次项系数、一次项系数、常数项。 2、让学生指出方程,中的二次项系数、一次项系数和常数项。 (三)讲解例题 例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。 解去括号,得3x2+5x-12=x2+4x+4, 化简,得2x2+x-16=0。 二次项系数是2,一次项系数是1,常数项是-16。 点评:一元二次
26、方程的一般形式ax2+bx+c=0(a0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生相识到:二次项系数、一次项系数和常数项都是包括符号的。 例2:下列方程,哪些是一元一次方程?哪些是一元二次方程? (1)2x+3=5x-2;(2)x2=25; (3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。 解方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。 点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。 (四)应用新知 课本P.4,练习第3题 (五)课堂小结 1、一元二次方程的显著特征是:只
27、有一个未知数,并且未知数的次数是2。 2、一元二次方程的一般形式为:ax2+bx+c=0(a0),一元二次方程的二次项系数、一次项系数、常数项都是依据一般形式确定的。 3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。 (六)思索与拓展 当常数a,b,c满意什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满意什么条件时,方程(a-1)x2-bx+c=0是一元一次方程? 当a1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b0时是一元一次方程。 布置作业 课本
28、习题1.1中A组第1,2,3题。 教学后记: 初三数学课的教学教案5 教学目标 1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性. 经验视察、分析、沟通的过程,逐步提高运用学问的实力. 提高学生的视察、分析实力和对图形的感知水平. 会求反比例函数的解析式. 反比例函数图象和性质的运用. 教学过程 一、情景导入,初步认知 1.反比例函数有哪些性质?2.我们学会了依据函数解析式画函数图象,那么你能依据一些条件求反比例函数的解析式吗? 复习上节课的内容,同时引入新课. 二、思索探究,获得新知 1.思索:已知反比例函数y=的图象经过点P(2,4)
29、 (1)求k的值,并写出该函数的表达式; (2)推断点A(-2,-4),B(3,5)是否在这个函数的图象上; (3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何改变? 分析: (1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了. (2)要推断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在. (3)依据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的改变状况. 这种求解析式的方法叫做待定系数法求解析式. 2.下图是反比例函数y=的图
30、象,依据图象,回答下列问题: (1)k的取值范围是k>0还是k<0?说明理由; (2)假如点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小. 分析: (1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0. (2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2. 通过视察图象,使学生驾驭利用函数图象比较函数值大小的方法.