《高中数学排列组合教案最新.docx》由会员分享,可在线阅读,更多相关《高中数学排列组合教案最新.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学排列组合教案中学数学排列组合教案1 上个学期,依据须要,学校支配我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老老师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有安排,有组织,有步骤。经过了一学期,我对教学工作有了如下感想: 一、仔细备课,做到既备学生又备教材与备教法。 上学期我依据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思索到,仔细写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的打算,课后刚好对该课作出小结,并仔细整理每一章节的学问要点,帮忙学生进行归纳总结。 二、增加上课技能,提高
2、教学质量。 增加上课技能,提高教学质量是我们每一名新老师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简洁,学得开心。留意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思索每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。 三、虚心向其他老师学习,在教学上做到有疑必问。 在每个章节的学习上都专心征求其他有阅历老师的看法,学习他们的方法。同时多听老老师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的看法,改善教学工作。 四、仔细批改作业、布置作业有针对性,有层次性。 作业是学生对
3、所学学问巩固的过程。为了做到布置作业有针对性,有层次性,我经常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改刚好、仔细,并分析学生的作业状况,将他们在作业过程出现的问题刚好评讲,并针对反映出的状况刚好改善自己的教学方法,做到有的放矢。 然而,在确定成果、总结阅历的同时,我清晰地相识到我所获得的教学阅历还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,专心向老老师学习以提高自己的教学水平。 以上几点便是我的一点心得,期望能发扬优点,克服不足,总结阅历教训,为今后的教化教学工作积累阅历,以便尽快地提高自己的水平。 #
4、278068中学数学排列组合教案2 了解双曲线的定义,几何图形和标准方程,知道它的简洁性质。 1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 , 渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。 2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是 3.经过两点 的双曲线的标准方程是 。 4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。 5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为 1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。 2.已知椭圆具有性质:若 是椭圆 上
5、关于原点对称的两个点,点 是椭圆上随意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。 3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。 1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。 2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。 3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是 4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。 1. 已知双曲线 的焦点到渐近线的距离是其
6、顶点到渐近线距离的2倍,则该双曲线的离心率 2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。 3. 双曲线 的焦距为 4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则 5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 . 6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 #278069中学数学排列组合教案3 教学目标 (1)使学生正确理解组合的意义,正确区分排列、组合问题; (2)使学生驾驭组合数的计算公式; (3)通过学习组合学问,让学生驾驭类比的学习方法,并提高学生分析问题和解决问
7、题的实力; 教学重点难点 重点是组合的定义、组合数及组合数的公式; 难点是解组合的应用题. 教学过程设计 (-)导入新课 (老师活动)提出下列思索问题,打出字幕. 字幕一条铁路途上有6个火车站,(1)需打算多少种不同的一般客车票?(2)有多少种不同票价的一般客车票?上面问题中,哪一问是排列问题?哪一问是组合问题? (学生活动)探讨并回答. 答案提示:(1)排列;(2)组合. 评述问题(1)是从6个火车站中任选两个,并按肯定的依次排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无依次关系,要求出不同的组数,属于组合问题.这节课着重探讨组合问题. 设计意图:组合与
8、排列所探讨的问题几乎是平行的.上面设计的问题目的是从排列学问中发觉并提出新的问题. (二)新课讲授 提出问题 创设情境 (老师活动)指导学生带着问题阅读课文. 字幕1.排列的定义是什么? 2.举例说明一个组合是什么? 3.一个组合与一个排列有何区分? (学生活动)阅读回答. (老师活动)比照课文,逐一评析. 设计意图:激活学生的思维,使其将所学的学问迁移过渡,并尽快适应新的环境. (老师活动)承接上述问题的回答,展示下面学问. 字幕模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思索题:6个火车站中甲站乙站和乙站甲站是票价相同的车票,是从6个元素中
9、取出2个元素的一个组合. 组合数:从 个不同元素中取出 个元素的全部组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 . 评述区分一个排列与一个组合的关键是:该问题是否与依次有关,当取出元素后,若变更一下依次,就得到一种新的取法,则是排列问题;若变更依次,仍得原来的取法,就是组合问题. (学生活动)倾听、思索、记录. (老师活动)提出思索问题. 投影 与 的关系如何? (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步: 第1步,先求出从这 个不同元素中取出 个元素的组合数为 ; 第2步,求每一个组合中 个元素的全排列数为 .依据分步计数原理,得
10、到 字幕公式1: 公式2: (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的一般客车票. 设计意图:本着以相识概念为起点,以问题为主线,以培育实力为核心的宗旨,逐步展示学问的形成过程,使学生思维层层被激活、渐渐深化到问题当中去. (老师活动)打出字幕,给出示范,指导训练. 字幕例1 列举从4个元素 中任取2个元素的全部组合. 例2 计算:(1) ;(2) . (学生活动)板演、示范. (老师活动)讲评并指出用两种方法计算例2的第2小题. 字幕例3 已知 ,求 的全部值. (学生活动)思索分析. 解 首先,依据组合的定义,有 其次,由原不等式转化为 即 解得 综合、,得 ,即 点评
11、这是组合数公式的应用,关键是公式的选择. 设计意图:例题教学按部就班,让学生巩固学问,强化公式的应用,从而培育学生的综合分析实力. (老师活动)给出练习,学生解答,老师点评. 课堂练习课本P99练习第2,5,6题. 补充练习 字幕1.计算: 2.已知 ,求 . (学生活动)板演、解答. 设计意图:课堂教学体现以学生为本,让全体学生参加训练,深刻揭示排列数公式的结构、特征及应用. (三)小结 (师生活动)共同小结. 本节主要内容有 1.组合概念. 2.组合数计算的两个公式. (四)布置作业 1.课本作业:习题10 3第1(1)、(4),3题. 2.思索题:某学习小组有8个同学,从男生中选2人,女
12、生中选1人参与数学、物理、化学三种学科竞赛,要求每科均有1人参与,共有180种不同的选法,那么该小组中,男、女同学各有多少人? 3.探讨性题: 在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形? (五)课后点评 在学习了排列学问的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培育学生分析问题、解决问题的实力. #278070中学数学排列组合教案4 教学目标 (1)正确理解排列的意义。能利用树形图写出简洁问题的全部排列; (2)了解排列和排列数的意义,能依据详细的问题,写出符合要求的排列; (3)驾驭排列数公
13、式,并能依据详细的问题,写出符合要求的排列数; (4)会分析与数字有关的排列问题,培育学生的抽象实力和逻辑思维实力; (5)通过对排列应用问题的学习,让学生通过对详细事例的视察、归纳中找出规律,得出结论,以培育学生严谨的学习看法。 教学建议 一、学问结构 二、重点难点分析 本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的驾驭和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中. 从n个不同元素中任取m(mn)个元素,根据肯定的依次排成一列,称为从n个不同元
14、素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列依次也完全相同.排列数是指从n个不同元素中任取m(mn)个元素的全部不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数. 公式推导要留意紧扣乘法原理,借助框图的直视说明来讲解.要重点分析好 的推导. 排列的应用题是本节教材的难点,通过本节例题的分析,应留意培育学生解决应用问题的实力. 在分析应用题的解法
15、时,教材上先画出框图,然后分析逐次填入时的种数,这样说明比较直观,教学上要充分利用,要求学生作题时也应尽量采纳. 在教学排列应用题时,起先应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培育学生的分析问题的实力,在基本驾驭之后,可以渐渐地不作这方面的要求. 三、教法建议 在讲解排列数的概念时,要留意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,根据肯定的依次摆成一排”,它不是一个数,而是详细的一件事;排列数是指“从n个不同元素中取出m个元素的全部排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,根据肯定的依次
16、排成一排,有如下几种: ab,ac,ba,bc,ca,cb, 其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数. 排列的定义中包含两个基本内容,一是“取出元素”,二是“按肯定依次排列”. 从定义知,只有当元素完全相同,并且元素排列的依次也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而依次不同的排列,都不是同一排列。叫不同排列. 在定义中“肯定依次”就是说与位置有关,在实际问题中,要由详细问题的性质和条件来确定,这一点要特殊留意,这也是与后面学习的组合的根本区分. 在排列的定义中 ,假如 有的书上叫选排列,假如 ,此时叫全排列. 要特殊留意,不加特
17、别说明,本章不探讨重复排列问题. 关于排列数公式的推导的教学.公式推导要留意紧扣乘法原理,借助框图的直视说明来讲解.课本上用的是不完全归纳法,先推导 , ,再推广到 ,这样由特别到一般,由详细到抽象的讲法,学生是不难理解的. 导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较困难的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最终一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最终一个因数是什么?一共有多少个连续的自然数相乘. 公式 是在引出全排列数
18、公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般状况下,要计算详细的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,犹如 时 一样,是一种规定,因此,不能按阶乘数的原意作说明. 建议应充分利用树形图对问题进行分析,这样比较直观,便于理解. 学生在起先做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题娴熟程度的提高,可以逐步降低这种要求. #278077中学数学排列组合教
19、案5 教学分析 本节课的探讨是对初中不等式学习的持续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小. 通过本节课的学习, 让学生从一系列的详细问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分相识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行视察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还支配了一些简洁的、学生易于处理的问题,其用意在于让学生留意对数学学问和方法的应用,同时也能激发学生的学习爱好,并由衷地产生用数学工具探讨不等
20、关系的愿望.依据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小. 在本节教学中,老师可让学生阅读书中实例,充分利用数轴这一简洁的数形结合工具,干脆用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的依次关系.要在温故知新的基础上提高学生对不等式的相识. 三维目标 1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系. 2.会用作差法推断实数与代数式的大小,会用配方法推断二次式的大小和范围. 3.通过温故知新,提高学生对不等式的相识,激发学生的学习爱好,体会数学的奇妙与数
21、学的结构美. 重点难点 教学重点:比较实数与代数式的大小关系,推断二次式的大小和范围. 教学难点:精确比较两个代数式的大小. 课时支配 1课时 教学过程 导入新课 思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮丽画面,它将学生带入“横看成岭侧成峰,远近凹凸各不同”的大自然和浩瀚的宇宙中,使学生在详细情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学探讨不等关系的剧烈愿望,自然地引入新课. 思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成果的多少等现实生活中学生身边熟识的事例,描述出某种客观事物在数量上存在
22、的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地绽开联想,老师组织不等关系的相关素材,让学 生用数学的观点进行视察、归纳,使学生在详细情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具探讨不等关系的愿望,从而进入进一步的探究学习,由此引入新课. 推动新课 新知探究 提出问题 (1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式探讨及表示不等关系? (2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗? (3)数轴上的随意两 点与对应的两实数具有怎样的关系? (4)
23、随意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系? 活动:老师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“”“”“”表示,而不等式则是表示两者的不等关系,可用“a>b”“a 老师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作探讨,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容. 实例1:某天的天气预报报道,气温32 ,最低气温26 . 实例2:对于数轴上随意不同的两点A、B,若点A在点B的左边,则xA 实例3:若
24、一个数是非负数,则这个数大于或等于零. 实例4:两点之间线段最短. 实例5:三角形两边之和大于第三边,两边之差小于第三边. 实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h. 实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%. 老师进一步点拨:能够发觉身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们探讨数学的人来说,能用数学的眼光、数学的观点进行视察、归纳、抽象,完成这些量与量的比较过程,这是我们每个探讨数学的人必需要做的,那么,我们可以用我们所探讨过的什么学问来表示这些不等关
25、系呢?学生很简单想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x6,a+20,34,05等. 老师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 t32 .实例3,若用x表示一个非负数,则x0.实例5,|AC|+|BC|>|AB|,如下图. |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|. |AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被
26、减数与减数的位置也可以. 实例6,若用v表示速度,则v40 km/h.实例7,f2.5%,p2.3%.对于实例7,老师应点拨学生留意酸奶中的脂肪含量与蛋白质含量需同时满意,避开写成f2.5%或p2.3%,这是不对的.但可表示为f2.5%且p2.3%. 对以上问题,老师让学生轮番回答,再用投影仪给出课本上的两个结论. 探讨结果: (1)(2)略;(3)数轴上随意两点中,右边点对应的实数比左边点对应的实数大. (4)对于随意两个实数a和b,在a=b,a>b,a应用示例 例1(教材本节例1和例2) 活动:通过两例让学生熟识两个代数式的大小比较的基本方法:作差,配方法. 点评:本节两例的求解,是
27、借助因式分解和应用配方法完成的,这两种方法是代数式变形时常常运用的方法,应让学生娴熟驾驭. 变式训练 1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是() A.f(x)>g(x) B.f(x)=g(x) C.f(x) 答案:A 解析:f(x)-g(x)=x2-2x+2=(x-1)2+11>0,f(x)>g(x). 2.已知x0,比较(x2+1)2与x4+x2+1的大小. 解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2. x0,得x2>0.从而(x2+1)2>x4+x2+1. 例2比较下列各
28、组数的大小(ab). (1)a+b2与21a+1b(a>0,b>0); (2)a4-b4与4a3(a-b). 活动:比较两个实数的大小,常依据实数的运算性质与大小依次的关系,归结为推断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最终的符号推断说理中,要理由充分,不行忽视这点. 解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b). a>0,b>0且ab,a+b>0,(a-b)2>0.(a-b)22(a+b)>0,即a+b2>21a+1b. (2)a4-b4-4a3(a-
29、b)=(a-b)(a+b)(a2+b2)-4a3(a-b) =(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)(a2b-a3)+(ab2-a3)+(b3-a3) =-(a-b)2(3a2+2ab+b2)=-(a-b)22a2+(a+b)2. 2a2+(a+b)20(当且仅当a=b=0时取等号), 又ab,(a-b)2>0,2a2+(a+b)2>0.-(a-b)22a2+(a+b)2<0. a4-b4<4a3(a-b). 点评:比较大小常用作差法,一般步骤是作差变形推断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全
30、平方式的“和”,也可两者并用. 变式训练 已知x>y,且y0,比较xy与1的大小. 活动:要比较随意两个数或式的大小关系,只需确定它们的差与0的大小关系. 解:xy-1=x-yy. x>y,x-y>0. 当y<0时,x-yy<0,即xy-1<0. xy<1; 当y>0时,x-yy>0,即xy-1>0.xy>1. 点评:当字母y取不同范围的值时,差xy-1的正负状况不同,所以需对y分类探讨. 例3建筑设计规定,民用住宅的窗户面积必需小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越
31、好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由. 活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采纳作差法. 解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,依据问题的要求a 由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab10%, 因此a+mb+m>ab10%. 所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了. 点评:一般地,设a、b为正实数,且a 变式训练 已知a1,a2,为各项都大于零的等比数列,公比q1,则() A.a1+a8>
32、a4+a5 B.a1+a8 C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定 答案:A 解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4 =a1(1-q3)-q4(1-q3)=a1(1-q)2(1+q+q2)(1+q)(1+q2). an各项都大于零,q>0,即1+q>0. 又q1,(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5. 课堂小结 1.老师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的学
33、问体系中. 2.老师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.激励学有余力的学生对节末的思索与探讨在课后作进一步的探究. 作业 习题31A组3;习题31B组2. 设计感想 1.本节设计关注了教学方法 的优化.阅历告知我们:课堂上应依据详细状况,选择、设计最能体现教学规律的教学 过程,不宜长期运用一种固定的教学方法,或原封不动地照搬一种试验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对特性,敏捷改变,因材施教才是胜利的施教灵药. 2.本节设计注意了难度限制.不等式内容应用面广,可以说与其他全部内容都有交汇,历 来是高考的重点与热点.作为本章起先,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响. 3.本节设计关注了学生思维实力的训练.训练学生的思维实力,提升思维的品质,是数学老师直面的重要课题,也是中学数学教化的主线.采纳一题多解有助于思维的发散性及敏捷性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.