《初中数学电子教案设计范文.docx》由会员分享,可在线阅读,更多相关《初中数学电子教案设计范文.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学电子教案设计初中数学电子教案设计1 教学目标 1、使学生能说出有理数大小的比较法则 2、能娴熟运用法则结合数轴比较有理数的大小,特殊是应用肯定值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。 3、能正确运用符号<>写出表示推理过程中简洁的因果关系。 三、教学重点与难点 重点:运用法则借助数轴比较两个有理数的大小。 难点:利用肯定值概念比较两个负分数的大小。 四、教学打算 多媒体课件 五、教学设计 (一)沟通对话,探究新知 1、说一说 (多媒体显示)某一天我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会
2、说从中知道广州的最低气温10比上海的最低气温0高,有些学生会说哈尔滨的最低气温零下20比北京的最低气温零下10低等;不会说的,老师适当点拔,从而学生在合作沟通中不知不觉地完成了以下填空。 比较这一天下列两个城市间最低气温的凹凸(填高于或低于) 广州_上海;北京_上海;北京_哈尔滨;武汉_哈尔滨;武汉_广州。 2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)视察这5个数在数轴上的位置,从中你发觉了什么? (3)温度的凹凸与相应的数在数轴上的位置有什么? (通过学生自己动手操作,视察、思索,发觉原点左边的数都是负数,原点右边的数都是正数;同时也发觉5在0右边,5比0大;10在5右边
3、,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。老师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探究学问的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探究的乐趣,在探究中不知不觉获得了学问。)由小组探讨后,老师归纳得出结论: 在数轴上表示的两个数,右边的数总比左边的数大。 正数都大于零,负数都小于零,正数大于负数。 (二)应用新知,体验胜利 1、练一练(师生共同完成例1后,学生完成随堂练习1) 例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的依次用<号连接。(师生共同完成) 分析:本题意有几层含义?应分几步?
4、 要点总结:小组探讨归纳,本题解题时的一般步骤:画数轴描点;有序排列;不等号连接。 随堂练习: P19 T1 2、做一做 (1)在数轴上表示下列各对数,并比较它们的大小 2和7-6和-1-6和-36-和-1.5 (2)求出图中各对数的肯定值,并比较它们的大小。 (3)由、从中你发觉了什么? (学生小组探讨后,代表站起来发言,口述自己组的发觉,说明自己组发觉的过程,逐步培育学生视察、归纳、用数学语言表达数学规律的实力。) 要点总结:两个正数比较大小,肯定值大的数大;两个负数比较大小,肯定值大的数反而小。 在学生探讨的基础上,由学生总结得出有理数大小的比较法则。 (1)正数都大于零,负数都小于零,
5、正数大于负数。 (2)两个正数比较大小,肯定值大的数大。 (3)两个负数比较大小,肯定值大的数反而小。 3、师生共同完成例2后,学生完成随堂练习2、3、4。 例2比较下列每对数的大小,并说明理由:(师生共同完成) (1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8| 分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要留意格式。 注:肯定值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。 两个负数比较大小时的一般步骤:求肯定值;比
6、较肯定值的大小;比较负数的大小。 思索:还有别的方法吗?(分组探讨,主动思索) 4、想一想:我们有几种方法来推断有理数的大小?你认为它们各有什么特点? 由学生探讨后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用其次种较好。 练一练:P19 T2、3、4 5、考考你:请你回答下列问题: (1)有没有的有理数,有没有最小的有理数,为什么? (2)有没有肯定值最小的有理数?若有,请把它写出来? (3)在于-1.5且小于4.2的整数有_个,它们分别是_。 (4)若a>0,b<0,a<|b|,则你能比较a
7、、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生驾驭) (新奇的问题会激发学生的新奇心,通过合作沟通,自主探究等活动,培育学生思维的习惯和数学语言的表达实力) 6、议一议,谈谈本节课你有哪些收获 (由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是根据法则,两两比较,另一种是利用数轴,运用这种方法时,首先必需把要比较的数在数轴上表示出来,然后根据它们在数轴上的位置,从左到右(或从右到左)用<(或>)连接,这种方法在比较多个有理数大小时特别简便。 六、布置作业:P19 A组、B组 基础好的A、B两组都做 基础较差的同学选做A组。 #59261
8、0初中数学电子教案设计2 教学目标 1、学问与技能:体会公式的发觉和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简洁的计算. 2、过程与方法:通过让学生经验探究完全平方公式的过程,培育学生视察、发觉、归纳、概括、猜想等探究创新实力,发展推理实力和有条理的表达实力.培育学生的数形结合实力. 3、情感看法价值观:体验数学活动充溢着探究性和创建性,并在数学活动中获得胜利的体验与喜悦,树立学习自信念. 教学重难点 教学重点: 1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何说明. 2、会运用公式进行简洁的计算. 教学难点: 1、完全平方公式的推导及其几何说
9、明. 2、完全平方公式的结构特点及其应用. 教学工具 课件 教学过程 一、复习旧知、引入新知 问题1:请说出平方差公式,说说它的结构特点. 问题2:平方差公式是如何推导出来的? 问题3:平方差公式可用来解决什么问题,举例说明. 问题4:想一想、做一做,说出下列各式的结果. (1)(a+b)2(2)(a-b)2 (此时,老师可让学生分别说说理由,并且不干脆给出正确评价,还要接着激发学生的学习爱好.) 二、创设问题情境、探究新知 一块边长为a米的正方形试验田,因须要将其边长增加b米,形成四块试验田,以种植不同的新品种.(如图) (1)四块面积分别为:、; (2)两种形式表示试验田的总面积: 整体看
10、:边长为的大正方形,S=; 部分看:四块面积的和,S=. 总结:通过以上探究你发觉了什么? 问题1:通过以上探究学习,同学们应当知道我们提出的问题4正确的结果是什么了吧? 问题2:假如还有同学不认同这个结果,我们再看下面的问题,接着探究.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证. (教学过程中老师要有意识地提到猜想、感觉得到的不肯定正确,只有再通过验证才能得出真知,但还是要激励学生大胆猜想,发表见解,但要验证) 问题3:你能说说(a+b)2=a2+2ab+b2 这个等式的结构特点吗?用自己的语言叙述. (结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上
11、这两数乘积的二倍) 问题4:你能依据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证. 总结:我们把(a+b)2=a2+2ab+b2(ab)2=a22ab+b2称为完全平方公式. 问题:这两个公式有何相同点与不同点?你能用自己的语言叙述这两个公式吗? 语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍. 强化记忆:首平方,尾平方,首尾二倍放中心,和是加来差是减. 三、例题讲解,巩固新知 例1:利用完全平方公式计算 (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2 解:(2x-3)2=(2x)2-2o(2x)o3+32 =4x
12、2-12x+9 (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2 =16x2+40xy+25y2 (mn-a)2=(mn)2-2o(mn)oa+a2 =m2n2-2mna+a2 沟通总结:运用完全平方公式计算的一般步骤 (1)确定首、尾,分别平方; (2)确定中间系数与符号,得到结果. 四、练习巩固 练习1:利用完全平方公式计算 练习2:利用完全平方公式计算 练习3: (练习可采纳多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生相互批改,力求使学生对公式完全驾驭,如有学生出现问题,学生、老师应刚好帮助.) 五、变式练习 六、畅谈收获,归纳总结 1、本节课我们学习
13、了乘法的完全平方公式. 2、我们在运用公式时,要留意以下几点: (1)公式中的字母a、b可以是随意代数式; (2)公式的结果有三项,不要漏项和写错符号; (3)可能出现这样的错误.也不要与平方差公式混在一起. 七、作业设置 #593895初中数学电子教案设计3 教学目标 1, 整理前两个学段学过的整数、分数(包括小数)的学问,驾驭正数和负数的概念; 2, 能区分两种不同意义的量,会用符号表示正数和负数; 3, 体验数学发展的一个重要缘由是生活实际的须要,激发学生学习数学的爱好。 教学难点 正确区分两种不同意义的量。 学问重点 两种相反意义的量 教学过程(师生活动) 设计理念 设置情境 引入课题
14、 上课起先时,老师应通过详细的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思索:生 活中仅有这些“以前学过的数”够用了吗?下面的例子 仅供参考. 师:今日我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37% 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思索,沟通 师:以前学过的数,事实上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数
15、和分数够用了吗? 请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思索探讨,然后进行沟通。 (也可以出示气象预报中的气温图,地图中表示地形凹凸地形图,工资卡中存取钱的记录页面等) 学生沟通后,老师归纳:以前学过的数已经不够用了,有时候须要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们须要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实
16、际. 这个问题能激发学生探究的欲望,学生自己看书学习是培育学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中到处有数学,通过实例,使学生获得大量的感性材料,为正确建立相反意义的量奠定基础。 分析问题 探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必需要求学生理解. 老师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生沟通. 这阶段主要是让学生学会正数和负数的表示. 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如
17、向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要学问,老师要清晰地向学生说明,并且要留意语言的精确与规范,要舍得花时间让学充分发表想法。 举一反三思维拓展 经过上面的探讨沟通,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,老师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”“负整数,正分数”和“负分数”的呢?请举例说明. 能否举出例子是学生对学问驾驭程度的体现,也能进一步帮助学生理解引负数的必要性 课堂练习 教科书第5页
18、练习 小结与作业 课堂小结 围绕下面两点,以师生共同沟通的方式进行: 1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了; 2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。 本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思索题。 作业可设必做题和选 做题,体现要求的层次性,以满意不同学生的须要 本课教化评注(课堂设计理念,实际教学效果及改进设想) 亲密联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次学问的顺
19、应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必需对原有的数的结构进行整理,引人币的举例就是这个目的. 负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子 或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中的确 存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例 子,并且所举的例子又应当符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了. 这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用
20、价值, 体现了学生自主学习、合作沟通的教学理念,书本中的图片和例子都是生活生产中常见 的事实,学生简单接受,所以应当让学生自己看书、学习,并且激励学生探讨沟通,老师作适当引导就可以了。 #593369初中数学电子教案设计4 一、教材分析 1、教材的地位和作用 本课位于人民教化出版社义务教化课程标准试验教科书七年级下册第五章其次节第一课时。主要内容是让学生在充分感性相识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础学问,是相交线与平行线的重点,学习它会为后面的学行线性质、三角形、四边形等学问打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的相识,建立空间观念,发展思维,并能让
21、学生在活动的过程中沟通共享探究的成果,体验胜利的乐趣,提高运用数学的实力。 2、教学重难点 重 点 三种位置关系的角的特征;会依据三种位置关系的角来推断两直线平行的方法。 难 点 “转化”的数学思想的培育。 由“说点儿理”到“用符号表示推理”的逐层加深。 二、教学目标 学问目标 了解同位角、内错角、同旁内角等角的特征,相识“直线平行”的三个充分条件及在实际生活中的应用。 实力目标 通过视察、思索探究等活动归纳出三种判定方法,培育学生转化的数学思想,培育学生动手、分析、解决实际问题的实力。 通过活动及实际问题的探讨引导学生从数学角度发觉和提出问题,并用数学方法探究、探讨和解决问题。 情感目标 感
22、受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的爱好,培育敢想、敢说、敢解决实际问题的学习习惯。 通过学生体验、猜想并证明,让学生体会数学充溢着探究和创建,培育学生团结协作,勇于创新的精神。 通过“转化”数学思想方法的运用,让学生相识事物之间是普遍联系,相互转化的辩证唯物主义思想。 三、教学方法 1、采纳指导探究法进行教学,主要通过二个师生双边活动:动师生互动,共同探究。导学问类比,合理引导等突出学生主体地位,让老师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参加数学活动,经验问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。 2、依据学生实际状况,整堂
23、课围绕“情景问题学生体验合作沟通”模式,激励学生主动合作,充分沟通,既满意了学生对新学问的剧烈探究欲望,又解除学生学习几何方法的缺乏,和学无所用的思想顾虑。对学习有困难的学生刚好赐予帮助,让他们在学习的过程中获得开心和进步。 3、利用课件协助教学,突破教学重难点,扩高校生学问面,使每个学生稳步提高。 四、教学流程: 我的教学流程设计是:从创设情境,孕育新知起先,经验探究新知,构建模式;说明新知,落实新知;总结新知,布置作业等过程来完成教学。 创设情境,孕育新知: 师生观赏三幅图片,让学生视察、思索从几何图形上看有什么共同点。 从学生经验过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学
24、生留心实际生活,观赏木工画平行线的方法。 落实到学生是否会画平行线?本环节老师展示图片,学生视察思索,沟通回答问题,了解实际生活中平行线的广泛应用。 设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习爱好。从学生经验过的事入手。让学生知道数学学问无处不在,应用数学无时不有。符合“数学教学应从生活阅历动身”的新课程标准要求。 2、试验操作,探究新知1 由学生是否会画平行线导入,用小学学过的方法过点P画直线AB的平行线CD,学生动手画并展示。 学生思索三角尺起什么作用(老师点拨)? 学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。 老师把学生画平
25、行线的过程和塑料条模型抽象成几何图形,指明同位角的位置关系是截线,被截线的同旁, 归纳:两直线平行条件1 老师展示一组练习,学生独立完成,巩固新知。 在这一环节中,老师应关注: 学生能否画平行线,动手操作是否精确 学生能否独立探究、参加、合作、沟通 设计意图:复习提问,利用教具、学具让学生动手,提高学生学习爱好,调动学生思索和主动性,提高学生合作沟通的实力和质量,老师有的放矢,让学生驾驭重点,培育学生自主探究的学习习惯和实力。刚好练习巩固,体现学以致用的观念,消退学生学无所用的思想顾虑。 3、大胆猜想,探究新知 学生分组探讨: 2和3是什么位置关系? 3和4是什么位置关系? 直线CD绕O旋转是
26、否还保持上述位置关系? 2与3,2与4肯定相等吗?猜想,展示探讨成果。 学生探究: 问题:2=3能得到ABCD吗? 2+4=180可以判定ABCD吗? 学生用语言表述推理过程,老师深化学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳直线平行的条件2,3。 学生独立完成练习。 本环节老师关注: 学生能否主动参加数学活动,敢于发表个人观点。 小组团结协作程度,创新意识。 表扬优秀小组 设计意图:猜想、沟通、归纳,符合学问的形成过程,培育学生转化的数学思想,学会将生疏的转化为熟识的,将未知的转化为已知的。并用练习刚好巩固,落实新知与方法,增加学生运用数学的实力。 4、说明运用,巩固新知
27、 本环节共有五个练习,第一题落实同位角、内错角、同旁内角位置特征。其次、三题落实三种判定方法的应用。第四、五题是注意学生动手操作,解决实际问题的训练。 本环节老师应关注: 深化学生当中,对学习有困难学生进行激励,帮助。 学生的思维角度是否合理。 设计意图:加强学生运用新知的意识,培育学生解决实际问题的实力和学习数学的爱好,让学生巩固所学内容,并进行自我评价,既面对全体学生,又照看个别学有余力的学生,体现因材施教的原则。 5、总结新知,布置作业 通过设问回答补充的方式小结,学生自主回答三个问题,老师关注全体学生对本节课学问的程度,学生是否情愿表达自己的观点,采纳必做题和选做题的方式布置作业。 设
28、计意图:通过提问方式引导学生进行小结,养成学习总结再学习的良好习惯,发挥自我评价作用,同时可培育学生的语言表达实力。作业分层要求,做到面对全体学生,给基础好的学生充分的空间,满意他们的求知欲。 五、教学设计 #592498初中数学电子教案设计5 驾驭用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简洁的方法因式分解法解一元二次方程,并应用因式分解法解决一些详细问题. 重点 用因式分解法解一元二次方程. 难点 让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便. 一、复习引入 (学生活动)解下列方程: (1)2x2+x=0(用配方法)(2)3x
29、2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)干脆用公式求解. 二、探究新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x+1)=0(2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12. (2)3x=0
30、或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?) 因此,我们可以发觉,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1解方程: (1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2 思索:运用因式分解法解一元二次方程的条件是什么? 解:略(方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是() A.(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7 B.(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=25,x2=35 C.(x+2)2+4x=0,x1=2,x2=-2 D.x2=x,两边同除以x,得x=1 三、巩固练习 教材第14页练习1,2. 四、课堂小结 本节课要驾驭: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0. 五、作业布置 教材第17页习题6,8,10,11 初中数学教化方案