《高中数学必修五数列通项课件.ppt》由会员分享,可在线阅读,更多相关《高中数学必修五数列通项课件.ppt(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学备课组,数列通项,a n = n,a n = 2n 1,a n = 2n + 1,a n = 2n,a n = 2 ( n 1 ),a n = 2 n,a n = n 2,a n = ( 1 ) n1,a n = ( 1 ) n,二、观察法求通项:,三、特殊数列的通项:等差数列:_ _等比数列:_ _此法的前提:_,a n = a 1 + ( n 1 ) d,a n = a m + ( n m ) d,a n = a m q n m,a n = a 1 q n 1 ( a 1、q 0 ),是否能判断此数列是等差数列还是等比数列,公式法求通项:特征:_;公式:_说明:1) 单由 S n
2、S n 1 = a n 求 a n,则有 n _; 2) 由 S n S n 1 = a n 求 a n, 若 n = 1 时,由an有 _,则 a n = _ 3) 由 S n S n 1 = a n 求 a n,若 n = 1 时,由an有 _,则 a n = _,已知 S n ,求 a n, 2,a 1 = S 1,S n S n 1,a 1 S 1,1、已知数列 a n 的前 n 项和为 S n = 3n 2 + 2n,求 a n,解:当 n 2 时,a n = S n S n 1,= 6n 1,当 n = 1 时,a 1 = S 1 = 5,又由 a n = 6n 1得a1=5,2、
3、已知数列 a n 的前 n 项和为 S n = 3 n + 1,求 a n,解:当 n 2 时,a n = S n S n 1,= 3 n 3 n 1,= 3 n 1 ( 3 1 ),= 23 n 1,当 n = 1 时,a 1 = S 1 = 4,故 a n =,故 a n = 6n 1,又由 a n = 23 n 1 得23 1 1 =2 a1,应用定义解决问题:,例:已知数列an中, a1=2,an-an-1=2, (n2)求an,变1:已知数列an中, a1=2,an-an-1=n, (n2)求an,变2:已知数列an中, a1=2,an-an-1=2n, (n2)求an,归纳:在数列an中,已知a1,an-an-1=f(n), (n2)(其中f(n)可求和 )求an,变:已知数列an中, a1=2,an-2an-1=2, (n2)求an,变:已知数列an中, a1=2,an-2an-1=2n, (n2)求an,