《供水水文地质学教程_第5章地下水的稳定渗流运动.ppt》由会员分享,可在线阅读,更多相关《供水水文地质学教程_第5章地下水的稳定渗流运动.ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第5章 地下水的稳定渗流运动,本书只讨论液态重力地下水的运动。5.1 地下水运动特征和渗透基本规律达西定律: K渗透系数; J水力坡度; 渗透流速。当Re10时,曲线偏离直线,此时地下水运动仍可为层流,但不服从达西定律。天然情况下,绝大多数地下水运动是服从达西定律的。5.1.2 非线性渗透定律: 流态指数,1m2,5.2平面渗流问题的流网解法渗流场内的水头及流向是空间的连续函数,因此可作出一系列水头值不同的等水头线(面)和一系列流线(面),由一系列等水头线(面)与流线(面)所组成的网格称为流网。 在各向同性介质中,地下水必定沿着水头变化最大的方向即垂直于等水头线的方向运动,因此,流线与等水头线
2、构成正交网格。通常把流网绘成曲边正方形。,1.流线 2.等水头线 3.断层 4.抽水井,位于同一等势线上的各测压管中的水面一样高,相邻等势线间的势差相等。,5.2.2应用流网求解渗流已知渗流上、下游水头h1和h2 ,水头差H= h1 - h2 ,流网共有n+1条等势线,则两相邻等势线间的水头 , 流网共有m+1条流线 。见图5.2。从上游算起的第i条等势线上的水头为hi,则 设从水头基准线(注:以AB线为基准面)向下到计算点的垂直距离为y,则作用在该点的渗透压强为p=rg(hi+y) ,式中hi为该点的水头。 作用在地下轮廓上的垂直渗透总压力为 ,式中为渗透压强水头分布图的面积,b为建筑物宽度
3、。总压力作用线通过该面积的形心。,渗透流速与水力坡度渗流区内各点的水力坡度可从下式求出: ,式中H为该处网格两边相邻等势线的水头差 ,s为该网格内流线长度,渗流区内各点的渗透流速为 渗流量: 和si可从流网图中量出。 取各网格的边长比例为常数、并等于1,则:自己看P52例5.2 。,5.3 地下水向完整单井的稳定渗流运动 提取地下水的工程设施称为取水构筑物。当取水构筑物中地下水的水位和抽出的水量都保持不变,这时水流称为稳定渗流运动。 5.3.1地下水流向潜水完整井 根据裘布依的理论,当在潜水完整井中进行长时间的抽水后,井中的动水位和出水量都会达到稳定状态,同时在抽水井周围亦会形成有规律的稳定的
4、降落漏斗,漏斗的半径R称为影响半径,井中的水面下降值s称为降深,从井中抽出的水量称单井出水量。 潜水完整井稳定流计算公式(裘布依公式)的推导假设条件:,1.天然水力坡度等于零,抽水时为了用流线倾角的正切代替正弦,则井附近的水力坡度不大于1/4;2.含水层是均质各向同性的,含水层的底板是隔水的;3.抽水时影响半径的范围内无渗入、无蒸发,每个过水断面上流量不变;在影响半径范围以外的地方流量等于零;在影响半径的圆周上为定水头边界;4.抽水井内及附近都是二维流(抽水井内不同深度处的水头降低是相同的)。推导公式的方法是从达西公式开始的,因为有:Q=kJA假设地下水向潜水完整井的流动仍属缓变流,井边附近的
5、水力坡度不大于1/4;这样就可使那些弯曲的过水断面近似地被看作直面,如把BB曲面近似地用BB/直面来代替,地下水的过水断面就是圆柱体的侧面积:A=2pxy,从图5.5亦可看出:地下水向潜水完整井的流动过程中水力坡度J是个变数,但任意断面处的水力坡度J均可表示为:J=dy/dx故地下水通过任意过水断面BB/的运动方程为:,将上式分离变量并积分:,因,地下水向潜水完整井运动规律的方程式,亦称裘布依公式。,B,B,A,A,公式表明潜水完整井的出水量Q与井内水位降深s0的二次方成正比,这就决定了Q与s0间的抛物线关系。即随着s0值的增大,Q的增加值将越来越小。,5.3.2地下水流向承压水完整井,根据裘
6、布依稳定流理论,在承压完整井中抽水时,经过一个相当长的时段,从井内抽出来的水量和井内的水头降落同样均能达到稳定状态,这时在井壁周围含水层内就会形成抽水影响范围,这种影响范围可以由承压含水层中的水头的变化表示出来,承压水头线的变化具有降落漏斗的形状,,A =2pxM;i=dy/dx,地下水通过任意过水断面的流量为,因h0=Hs0,反映地下水向承压完整井运动规律的方程式,亦称裘布依公式。,Q与s0间为直线关系,5.3.3裘布依(Dupuit)公式的讨论1.抽水井流量与水位降深的关系,这里所讨论的降深,仅仅考虑地下水在含水层中流动的结果。但实际上降深是多种原因造成的水头损失的叠加。另外主要还有:(2
7、)由于水井施工时泥浆堵塞井周围的含水层,增加了水流阻力所造成的水头损失。(3)水流通过过滤器孔眼时所产生的水头损失。(4)水流在滤水管内流动时的水头损失。(5)水流在井管内向上流动至水泵吸水口的沿程水头损失。这些损失,有些与流量的一次方成正比,有的与流量的二次方成正比。由于上述原因,承压水的出水量Q与s的线性关系也是不多见的。,2.抽水井流量与井径的关系由地下水向潜水完整井和承压完整井运动规律的方程式可看出流量Q与井的半径r之间只是对数关系,即井的半径增加一倍,流量只增加10%左右;井半径增加10倍,流量亦只增加40%左右。Q与r的这种对数关系已被大量事实所否定,中外许多水文地质工作者曾作过大
8、量的试验,其结果大都表明当井半径r增大之后,流量的实际增加要比用(Dupuit)公式计算结果大的多。,3.水跃对裘布依(Dupuit)公式计算结果的影响,潜水井抽水时,只有当水位降低非常小时,井内水位才与井壁水位接近一致;而当水位降低较大时,井内水位就明显低于井壁水位,,见右图,此种现象称为水跃(渗出面),潜水井水跃示意图,Dupuit降落曲线方程没有考虑水跃的存在,因此在抽水井附近,实际曲线将高于Dupuit理论曲线。随着距抽水井的距离的加大,等水头线变直,流速的垂直分量变小,理论曲线与实际曲线才渐趋一致。,4.潜水井的最大流量问题,当s0=H时,h0=0;此时井的流量为最大。这在实际上是不
9、可能的,在理论上也是不合理的。因为当h0=0,则过水断面亦等于零,就不应当有水流入井中,这种理论上的自相矛盾亦反映了裘布依公式是不很严密的。,这种矛盾的产生是由于裘布依推导潜水井公式时,忽略了渗透速度的垂直分量,假定水位降深不大,水力坡度采用水头差与渗透路径的水平投影之比,即J=dh/dl=tgq,见右图;而严格说来,水力坡度应当是水头差与渗透路径之比,即J=dh/dl=sinq。用thq代替sinq ,应q 1M1.5M(M为承压含水层的厚度)的II区,流线接近平行层面,水流基本为二维流。一般认为,I区由于流线弯曲导致水流的流程增长,且沿途水流方向变化,从而产生附加阻力,能量损耗增大。因此,
10、在相同流量的情况下,不完整井的降深大于完整井的降深。,II,II,右图表示井的过滤器在含水层中间,其流线弯曲又是一种情况,井的流量和降深也是不同的。,II,L,1.空间汇点空间汇点可理解为直径无限小的球形过滤器,以一定的抽水量沿径向从各个方向不断地吸收地下水。在球坐标中可作为一维流。设A点离空间汇点距离为r,其降深为s,各等降深面是以汇点为中心,半径不一的同心球面,见下图。A处的过水断面面积A=4pr2流向空间汇点的流量:,空间绘点图,在r至影响半径R的范围内积分,得:,在R远大于r时,1/R可忽略。得:,对井底刚揭穿承压含水层隔水顶板,构成井底进水的非完整井。这时,可以把它看作是直径无限小的
11、半球形过滤器。这样该井的流量相当于空间汇点的一半,即 。把计算点A放在井壁上,r = r0,则:Q=2p kr0s0,2. 空间汇线过滤器有一定的长度L,离含水层的隔水顶板较近的不完整井,隔水顶板对水流的影响和隔水边界附近的井相似。因此,可以用映象法和叠加原理。这时,我们可以设想,真实的圆柱形过滤器是由无数个空间汇点组成的空间汇线,见右图。,沿长为L的汇线上,流量均匀分布,取空间汇线上的一微小段L,并将其看成是一空间汇点,流向它的流量Q可表示为,在其作用下任意点A的降深为,由于隔水顶板的影响,可用映象后得到的虚空间汇点来代替,这时空间任意点A的降深应为实空间汇点和虚空间汇点产生的降深叠加,即,
12、半无限承压水层中,不完整井位于隔水顶板附近时,任意点的降深:,5.4.1半无限承压含水层中的非完整井,(5.13),承压水含水层的厚度较大时,建造的管井往往为非完整井。自然界中含水层无限大的情况很少见,所谓厚度大也只是相对于过滤器的长度而言。过滤器上端和隔水顶板相接这时,空间汇线二端坐标为z1=0,z2=L,由式(5.13)得:,假想一个过滤器,它的水头和真实井壁上的水位相等。将此水头的半旋转椭球面想象它与真实的圆柱形过滤器套在一起,二者的交点坐标为( r0 ,z0),代入上式得:,当z0=0.75L时,按上式计算的流量与真实不完整井的流量相等。因此将此条件代入上式,列出数学关系,化简后得:当
13、x1时, 应用时要求L/r05,上式称为巴布什金公式。,吉林斯基根据假想过滤器与真实过滤器表面积相等的原则,将半椭球面换算成圆柱面后得:,(5.15),过滤器与隔水顶板不相接过滤器在含水层中与隔水顶板相距为C,即Z1=C,Z2=C+L,代入(5.13)化简得:,从右图中可得:z0=C+0.87L=C(0.13+0.87a)。式中:,代入式(5.15)得,式中,5.4.2含水层厚度有限的承压水非完整井承压含水层的厚度相对于过滤器的长度不是很大的情况。这时要考虑隔水顶板和底板对水流的影响。,下面介绍过滤器的长度L0.3M时的承压非完整井的出水量公式。,(1)当过滤器紧靠隔水顶板时,见右图,用汇线无
14、限次映象,叠加求得这个问题的近似公式,式中 a = L/M,(5.16),当a =1时,A=0,则(5.16)式变成承压完全井公式,这就说明(5.16)式是合理的。但当a 很小时,A变的很大,这时有可能,这时式(5.16)将变为:,这就成了和半径为4M的承压完整井的流量一样。当a 很小时,承压非完整井的流量竟会比同样条件下半径为r0的完整井的流量还要大,这显然是不合理的。由此可见,当A很大时,式(5.16)就失去应用的意义。,当L/r05及r0/M0.01时,(5.16)式可以得到满意的结果,误差不超过10%。,承压非完整井亦可用下列公式计算:,该公式的适用范围为:M150 r0;L/M0.1
15、。,或 :,该公式的适用范围为:过滤器位于含水层的顶部或底部。,(2)过滤器与隔水顶板不相接时,当,时,流网在过滤器上、下端部弯曲很大,从两端向中间流线逐渐平缓,在水平中心线处流线接近水平。因此,通过过滤器水平中心线把过滤器分成上、下两段,作为两个过滤器与隔水顶板(即水平中心线)相接的不完整井看(不过上部的井要转1800之后看)。总流量是两个非完整井流量之和:,5.4.3.潜水含水层中的非完整井,过滤器上下两端的流线弯曲很大,从上端向中部流线弯曲程度逐渐变缓,从中部向下端又朝相反的方向弯曲。在中部流线AA处流线近于平面径向流动,见右图。因此可用分段法。,潜水非完整井,潜水井又分未淹没和淹没两种
16、:(1)当过滤器顶端未被地下水淹没时,通过过滤器中点的流面几乎与水平面平行;。因此可以用通过过滤器有效进水长度的中部的平面把水流区分为上下两段,上段可以看作潜水完整井,下段则是承压非完整井。这样潜水非完整井的流量就可以近似地看作上下两段流量之总和,但是这样计算所得的上段流量偏大些,下段流量偏小些,两段流量之和可抵消掉部分误差。,上段潜水完整井的流量,下段按承压水非完整井的流量计算。,当L/20.3 M0时,可由公式(5.16)得,当过滤器埋藏较深,即L/20.3 M0时,潜水非完整井的流量为,Q=Q上+Q下=,潜水非完整井亦可用下列公式进行计算,(2)当过滤器顶端被地下水淹没时, ,通过水平中
17、心线将潜水不完整井分成上下两个都是过滤器与隔水顶板相接的含水层厚度有限的承压非完整井,可用公式(5.17)。,5.5 边界附近地下水向单个完整井的稳定渗流运动当边界离井比较近或抽水时间长,边界对水流有明显的影响,这时就一定要考虑边界的存在。边界有补给边界和隔水边界两种,它们对水流的影响是不同的。 5.5.1汇流、源流和势函数假设:水流在垂直方向上的流速可忽略不计,地下水服从达西定律。 设j为渗透流速势简称势。因此对于水平潜水含水层:,对于承压含水层,对于完整潜水抽水井(注:汇流),应用流体力学的知识注:以流向汇点的流速为正:,同样对完整承压抽水井亦可得到上式。,以流出源点的流速为负,对于完整注
18、水井:,5.5.2映象法 映象法是:以直线边界为镜面,在它的一侧有一真实的井,对镜面映象后在它的另一侧和实井相对称的位置上有一流量相等的虚构井。以虚井的作用来代替原有边界的作用。将有边界的问题化为无边界的问题。用映象需遵循的原则:1.虚井和实井的位置对于边界是对称的;2.虚井和实井的流量相等;3. 定水头补给边界时,虚井与实井的类型相反;隔水边界时,虚井和实井的类型相同;4.虚井和实井的结构、工作时间相同。为求解边界附近单井抽水问题,可将它化为求解无限含水层中实井和虚井同时工作的问题,在原来边界位置上仍保持映象前的水流特征。再用势的叠加原理,将井的势函数用代数法叠加起来,便可求得原问题的解。,
19、5.5.3直线边界附近的井含水层这是指只有一条直线边界的含水层。分直线补给边界和直线隔水边界两种情况。直线补给边界附近的完整抽水井当抽水井单独工作对A点的势为当注水井单独工作对A点的势为,两个井同时工作时对A点的势为,为求得计算公式,将A点移到井壁上,这时r1= r0,r2=2a r0或r2=2a+r0,因为2ar0 所以r22a,将r0和2a代入上式得,将A点移到井壁上时 :,jA =jr0,边界y轴上取一点K,这时r1= r2,而,jK =C,jK jr0 =,将 式,代入得潜水井的势函数,将 式,代入得承压井的势函数,适合于,适合于,当2a=R时为裘布依公式,当2a=R时为裘布依公式,直
20、线隔水边界附近的完整抽水井,隔水边界便成了两个抽水井共同作用下形成的分水岭,是一条流线。映象后的虚井也为抽水井。,在y轴上任取一点A,A点向两个抽水井的渗流速度相等,两个井同时工作,对A点产生的势,把A点移到实抽水井井壁上,在井的影响半径R上取一点K,将势函数 或 代入得:,潜水井,承压井,上两式的适用条件是:,2.干扰井群即各井同时工作时:在各井共同作用下,必形成一公共浸润面,设A点水深为h,按势流叠加原理,则,(1)若各井出水量相同,设Q为井群的总出水量,则,井群的影响半径R,一般远大于井群的尺度,若A,点处于影响半径处:,R的经验公式估算:,见P71例5.3 。,(2)若各井的出水量不相等,则井群的浸润线方程为:而 sA=s1A+s2A+snA承压干扰完全井群,当Q1=Q2 =Qn时,其A点测压管方程为,式中 M含水层厚度,井群的总出水量见P72例5.4 和P74例5.5,5.6.3非完整井群,实践中常要用到非完整井群,而非完整井群的水流复杂,不象完整井群有系统的理论公式。许多学者做了大量研究,提出许多半经验公式。其中应用较广的有恰尔内近似解。他将非完整承压井水流分为三维流动带r0-r和平面径向流动带r0-R。把承压非完整井化为具有假想半径r0的完整井,然后用完整井群的公式乘以一个修正系数即可得非完整井群的公式。,