地质数据处理_8-方差分析.ppt

上传人:不*** 文档编号:2118233 上传时间:2019-12-07 格式:PPT 页数:70 大小:547.50KB
返回 下载 相关 举报
地质数据处理_8-方差分析.ppt_第1页
第1页 / 共70页
亲,该文档总共70页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《地质数据处理_8-方差分析.ppt》由会员分享,可在线阅读,更多相关《地质数据处理_8-方差分析.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、方 差 分 析,洪金益中南大学地学院,地质数据处理基础8,第八章 方差分析,第一节 方差分析的基本问题 第二节 单因素方差分析第三节 双因素方差分析,学习目标,解释方差分析的概念解释方差分析的基本思想和原理3.掌握单因素方差分析的方法及应用4.掌握双因素方差分析的方法及应用,第一节 方差分析的基本问题,一. 方差分析的内容二. 方差分析的原理三. F 分布,什么是方差分析?,什么是方差分析?(概念要点),检验多个总体均值是否相等通过对各观察数据误差来源的分析来判断多个总体均值是否相等2.变量一个定类尺度的自变量2个或多个 (k 个) 处理水平或分类一个定距或比例尺度的因变量3.用于分析完全随机

2、化试验设计,什么是方差分析? (一个例子),【例】某矿物由于含有不同的杂质而呈现不同的颜色,而颜色不同可以直观地判断成矿环境的差异。矿物的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。现根据同一个矿床中不同矿体的品位情况,分析矿物的颜色是否对矿石品位产生影响。,什么是方差分析? (例子的进一步分析),检验矿石的颜色对品位是否有影响,也就是检验四种颜色矿石的平均品位是否相同设1、2、 3、4分别为无色、粉色、橘黄色、绿色矿物的平均品位,检验下面的假设H0: 1 2 3 4 H1: 1 , 2 , 3 , 4 不全相等检验上述假设所采用的方法就是方差分析,方差分析的基本思想和原理,方差分析的基

3、本思想和原理(几个基本概念),因素或因子所要检验的对象称为因子要分析矿物的颜色对品位是否有影响,颜色是要检验的因素或因子水平因素的具体表现称为水平A1、A2、A3、 A4四种颜色就是因素的水平观察值在每个因素水平下得到的样本值每种颜色矿物的品位就是观察值,方差分析的基本思想和原理(几个基本概念),试验这里只涉及一个因素,因此称为单因素四水平的试验总体因素的每一个水平可以看作是一个总体比如A1、A2、A3、 A4四种颜色可以看作是四个总体样本数据上面数据可以看作是从这四个总体中抽取的样本数据,1.比较两类误差,以检验均值是否相等2.比较的基础是方差比3.如果系统(处理)误差显著地不同于随机误差,

4、则均值就是不相等的;反之,均值就是相等的4.误差是由各部分的误差占总误差的比例来测度的,方差分析的基本思想和原理,方差分析的基本思想和原理(两类误差),随机误差在因素的同一水平(同一个总体)下,样本的各观察值之间的差异比如,同一种颜色的矿物在不同采点上的品位是不同的不同采点的品位的差异可以看成是随机因素的影响,或者说是由于抽样的随机性所造成的,称为随机误差 系统误差在因素的不同水平(不同总体)下,各观察值之间的差异比如,同一采点,不同颜色矿物的品位也是不同的这种差异可能是由于抽样的随机性所造成的,也可能是由于颜色本身所造成的,后者所形成的误差是由系统性因素造成的,称为系统误差,方差分析的基本思

5、想和原理(两类方差),组内方差因素的同一水平(同一个总体)下样本数据的方差比如,无色矿物A1在5个采点的品位的方差组内方差只包含随机误差组间方差因素的不同水平(不同总体)下各样本之间的方差比如,A1、A2、A3、A4四种颜色矿物的品位之间的方差组间方差既包括随机误差,也包括系统误差,方差分析的基本思想和原理(方差的比较),如果不同颜色(水平)对品位(结果)没有影响,那么在组间方差中只包含有随机误差,而没有系统误差。这时,组间方差与组内方差就应该很接近,两个方差的比值就会接近1如果不同的水平对结果有影响,在组间方差中除了包含随机误差外,还会包含有系统误差,这时组间方差就会大于组内方差,组间方差与

6、组内方差的比值就会大于1当这个比值大到某种程度时,就可以说不同水平之间存在着显著差异,方差分析中的基本假定,方差分析中的基本假定,每个总体都应服从正态分布对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本比如,每种颜色矿物的品位必需服从正态分布各个总体的方差必须相同对于各组观察数据,是从具有相同方差的总体中抽取的比如,四种颜色矿物的品位的方差都相同观察值是独立的比如,每个采点的品位都与其他采点的品位独立,方差分析中的基本假定,在上述假定条件下,判断颜色对品位是否有显著影响,实际上也就是检验具有同方差的四个正态总体的均值是否相等的问题 如果四个总体的均值相等,可以期望四个样本的均

7、值也会很接近四个样本的均值越接近,我们推断四个总体均值相等的证据也就越充分样本均值越不同,我们推断总体均值不同的证据就越充分,方差分析中基本假定,如果原假设成立,即H0: m1 = m2 = m3 = m4四种颜色矿石品位的均值都相等没有系统误差 这意味着每个样本都来自均值为、方差为2的同一正态总体,方差分析中基本假定,如果备择假设成立,即H1: mi (i=1,2,3,4)不全相等至少有一个总体的均值是不同的有系统误差 这意味着四个样本分别来自均值不同的四个正态总体,第二节 单因素方差分析,一. 单因素方差分析的步骤二. 方差分析中的多重比较三. 单因素方差分析中的其他问题,单因素方差分析的

8、数据结构,单因素方差分析的步骤提出假设构造检验统计量统计决策,提出假设,一般提法H0: m1 = m2 = mk (因素有k个水平)H1: m1 ,m2 , ,mk不全相等对前面的例子H0: m1 = m2 = m3 = m4颜色对品位没有影响H0: m1 ,m2 ,m3, m4不全相等颜色对品位有影响,构造检验的统计量,为检验H0是否成立,需确定检验的统计量 构造统计量需要计算水平的均值全部观察值的总均值离差平方和均方(MS),构造检验的统计量(计算水平的均值 ),假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全部观察值总和除以观察值的个数计算公式为,式中

9、: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值,构造检验的统计量(计算全部观察值的总均值 ),全部观察值的总和除以观察值的总个数计算公式为,构造检验的统计量(前例计算结果 ),构造检验的统计量(计算总离差平方和 SST),全部观察值 与总平均值 的离差平方和反映全部观察值的离散状况其计算公式为,前例的计算结果: SST = (26.5-28.695)2+(28.7-28.695)2+(32.8-28.695)2 =115.9295,构造检验的统计量(计算误差项平方和 SSE),每个水平或组的各样本数据与其组平均值的离差平方和反映每个样本各观察值的离散状况,

10、又称组内离差平方和该平方和反映的是随机误差的大小计算公式为,前例的计算结果:SSE = 39.084,构造检验的统计量(计算水平项平方和 SSA),各组平均值 与总平均值 的离差平方和反映各总体的样本均值之间的差异程度,又称组间平方和该平方和既包括随机误差,也包括系统误差计算公式为,前例的计算结果:SSA = 76.8455,构造检验的统计量(三个平方和的关系),总离差平方和(SST)、误差项离差平方和(SSE)、水平项离差平方和 (SSA) 之间的关系,SST = SSE + SSA,构造检验的统计量(三个平方和的作用),SST反映了全部数据总的误差程度;SSE反映了随机误差的大小;SSA反

11、映了随机误差和系统误差的大小如果原假设成立,即H1 H2 Hk为真,则表明没有系统误差,组间平方和SSA除以自由度后的均方与组内平方和SSE和除以自由度后的均方差异就不会太大;如果组间均方显著地大于组内均方,说明各水平(总体)之间的差异不仅有随机误差,还有系统误差判断因素的水平是否对其观察值有影响,实际上就是比较组间方差与组内方差之间差异的大小为检验这种差异,需要构造一个用于检验的统计量,构造检验的统计量(计算均方 MS),各离差平方和的大小与观察值的多少有关,为了消除观察值多少对离差平方和大小的影响,需要将其平均,这就是均方,也称为方差;计算方法是用离差平方和除以相应的自由度;三个平方和的自

12、由度分别是:SST 的自由度为n-1,其中n为全部观察值的个数;SSA的自由度为k-1,其中k为因素水平(总体)的个数;SSE 的自由度为n-k。,构造检验的统计量(计算均方 MS),SSA的均方也称组间方差,记为MSA,计算公式为,SSE的均方也称组内方差,记为MSE,计算公式为,构造检验的统计量(计算检验的统计量 F ),将MSA和MSE进行对比,即得到所需要的检验统计量F当H0为真时,二者的比值服从分子自由度为k-1、分母自由度为 n-k 的 F 分布,即,构造检验的统计量(F分布与拒绝域),如果均值相等,F=MSA/MSE1,统计决策,将统计量的值F与给定的显著性水平的临界值F进行比较

13、,作出接受或拒绝原假设H0的决策根据给定的显著性水平,在F分布表中查找与第一自由度df1k-1、第二自由度df2=n-k 相应的临界值 F ;若FF ,则拒绝原假设H0 ,表明均值之间的差异是显著的,所检验的因素(A)对观察值有显著影响;若FF ,则不能拒绝原假设H0 ,表明所检验的因素(A)对观察值没有显著影响 。,单因素方差分析表(基本结构),MSE,单因素方差分析(输出结果),单因素方差分析(一个例子),【例】为了对D地层的4个组的含矿性进行评价,在D1、D2、D3、D4分别采取了不同的样本,其中D1采取7个,D2采取了6个,D3采取5个、D4采取了5个,对总共23个样本进行某含矿元素分

14、析,结果如下表。试分析这四个层位的含矿性是否有显著差异?(0.05),直观判断有没有差别?,单因素方差分析(计算结果),解:设四个组的均值分别为,m1、m2 、m3、m4 ,则需要检验如下假设 H0: m1 = m2 = m3 = m4 (四个组的含矿性无显著差异) H1: m1 ,m2 ,m3, m4不全相等 (有显著差异)输出的结果如下,结论:拒绝H0。四个组的含矿性有显著差异!,方差分析中的多重比较,方差分析中的多重比较(作用),多重比较是通过对总体均值之间的配对比较来进一步检验到底哪些均值之间存在差异多重比较方法有多种,其中Fisher提出的最小显著差异方法,简写为LSD,该方法可用于

15、判断到底哪些均值之间有差异 LSD方法是对检验两个总体均值是否相等的t检验方法的总体方差估计加以修正(用MSE来代替)而得到的,方差分析中的多重比较(步骤),提出假设H0: mi = mj (第i个总体的均值等于第j个总体的均值)H1: mi mj (第i个总体的均值不等于第j个总体的均值)检验的统计量为,若|t|t,拒绝H0;若|t|t,不能拒绝H0,方差分析中的多重比较(基于统计量xi-xj的LSD方法),通过判断样本均值之差的大小来检验 H0检验的统计量为 :xi xj检验的步骤为 提出假设H0: mi = mj (第i个总体的均值等于第j个总体的均值)H1: mi mj (第i个总体的

16、均值不等于第j个总体的均值)计算LSD,若|xi-xj|LSD,拒绝H0,若|xi-xj|2.096 颜色1与颜色2的品位有显著差异|x1-x3|= |27.3-26.4| =0.92.096 颜色1与颜色4的品位有显著差异|x2-x3|= |29.5-26.4| =3.12.096 颜色2与颜色3的品位有显著差异|x2-x4|= |29.5-31.4| =1.92.096 颜色3与颜色4的品位有显著差异,第三节 双因素方差分析,一. 双因素方差分析的基本问题二. 双因素方差分析的数据结构双因素方差分析的步骤一个应用实例,双因素方差分析的基本问题,双因素方差分析(概念要点),分析两个因素(因素

17、A和因素B)对试验结果的影响;分别对两个因素进行检验,分析是一个因素在起作用,还是两个因素都起作用,还是两个因素都不起作用;如果A和B对试验结果的影响是相互独立的,分别判断因素A和因素B对试验指标的影响,这时的双因素方差分析称为无交互作用的双因素方差分析;如果除了A和B对试验结果的单独影响外,因素A和因素B的搭配还会对结果产生一种新的影响,这时的双因素方差分析称为有交互作用的双因素方差分析;对于无交互作用的双因素方差分析,其结果与对每个因素分别进行单因素方差分析的结果相同。,双因素方差分析的基本假定,每个总体都服从正态分布;对于因素的每一个水平,其观察值是来自正态分布总体的简单随机样本各个总体

18、的方差必须相同;对于各组观察数据,是从具有相同方差的总体中抽取的观察值是独立的。,双因素方差分析的数据结构,双因素方差分析的数据结构, 是因素A的第i个水平下各观察值的平均值, 是因素B的第j个水平下的各观察值的均值, 是全部 kr 个样本数据的总平均值,双因素方差分析的步骤,提出假设,对因素A提出的假设为H0: m1 = m2 = = mi = = mk (mi为第i个水平的均值)H1: mi (i =1,2, , k) 不全相等对因素B提出的假设为H0: m1 = m2 = = mj = = mr (mj为第j个水平的均值)H1: mj (j =1,2,r) 不全相等,构造检验的统计量,为

19、检验H0是否成立,需确定检验的统计量 构造统计量需要计算总离差平方和水平项平方和误差项平方和均方,构造检验的统计量(计算总离差平方和 SST),全部观察值 与总平均值 的离差平方和反映全部观察值的离散状况计算公式为,构造检验的统计量(计算SSA、SSB和SSE),因素A的离差平方和SSA,因素B的离差平方和SSB,误差项平方和SSE,构造检验的统计量(各平方和的关系), 总离差平方和(SST )、水平项离差平方和 (SSA和SSB) 、误差项离差平方和(SSE) 之间的关系,SST = SSA +SSB+SSE,构造检验的统计量(计算均方 MS),各离差平方和的大小与观察值的多少有关,为消除观

20、察值多少对离差平方和大小的影响,需要将其平均,这就是均方,也称为方差计算方法是用离差平方和除以相应的自由度三个平方和的自由度分别是总离差平方和SST的自由度为 kr-1因素A的离差平方和SSA的自由度为 k-1因素B的离差平方和SSB的自由度为 r-1随机误差平方和SSE的自由度为 (k-1)(r-1),构造检验的统计量(计算均方 MS),因素A的均方,记为MSA,计算公式为,因素B的均方,记为MSB ,计算公式为,随机误差项的均方,记为MSE ,计算公式为,构造检验的统计量(计算检验的统计量 F),为检验因素A的影响是否显著,采用下面的统计量,为检验因素B的影响是否显著,采用下面的统计量,统

21、计决策,将统计量的值F与给定的显著性水平的临界值F进行比较,作出接受或拒绝原假设H0的决策:根据给定的显著性水平在F分布表中查找相应的临界值 F ;若FA F ,则拒绝原假设H0 ,表明均值之间的差异是显著的,即所检验的因素(A)对观察值有显著影响;若FB F ,则拒绝原假设H0 ,表明均值之间有显著差异,即所检验的因素(B)对观察值有显著影响 ;,双因素方差分析表(基本结构),双因素方差分析 (一个例子),【例】为分析地层时代(因素A)和岩相(因素B)对成矿的影响,在某成矿带对矿点、矿床进行统计,结果如下表。试分析地层时代和岩相对成矿作用是否有显著影响?,双因素方差分析(提出假设),对因素A提出的假设为H0: m1=m2=m3=m4 (时代对成矿作用没有影响)H1: mi (i =1,2, , 4) 不全相等 (时代对成矿作用有影响)对因素B提出的假设为H0: m1=m2=m3=m4=m5 (岩相对成矿作用没有影响)H1: mj (j =1,2,5) 不全相等 (岩相对成矿作用有影响),双因素方差分析,结论: FA18.10777F3.4903,拒绝原假设H0,说明时代对成矿作用有显著影响 FB2.100846 F3.2592,接受原假设H0,说明岩相对成矿作用没有显著影响,本章小结,方差分析(ANOVA)的概念方差分析的思想和原理方差分析中的基本假设进行方差分析,结 束,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 培训材料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁