Relation of hard and total cross sections to centrality.pdf

上传人:赵** 文档编号:21162415 上传时间:2022-06-18 格式:PDF 页数:10 大小:183.98KB
返回 下载 相关 举报
Relation of hard and total cross sections to centrality.pdf_第1页
第1页 / 共10页
Relation of hard and total cross sections to centrality.pdf_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《Relation of hard and total cross sections to centrality.pdf》由会员分享,可在线阅读,更多相关《Relation of hard and total cross sections to centrality.pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、9991raM021v1503099/th-lcu:nviXraAPH N.S., Heavy Ion Physics () HEAVY IONPHYSICSc Akad emiai Kiad oRelation of hard and total cross sections to centralityR. VogtNuclear Science Division, Lawrence Berkeley National LaboratoryUniversity of California, Berkeley, California 94720andPhysics Department,Uni

2、versity of California, Davis, California, 95616ReceivedFebruary 24, 1999Abstract. We compare the fractions of the hard and geometric cross sectionsas a function of impact parameter. For a given definition of central collisions,we calculate the corresponding impact parameter and the fraction of the h

3、ardcross section contained within this cut. We use charm quark production as adefinite example.In this note, revised from Ref. 1, standard nuclear density distributions aredescribed and the resulting geometrical overlap in nuclear collisions is calculated.We then compare the hard process cross secti

4、on to the total geometric cross sectionas a function of impact parameter and discuss how they are related to the collisioncentrality.A threeparameter WoodsSaxon shape is used to describe the nuclear densitydistribution,A(r) = 1 + (r/R0A)22RA(fm)162740631101972080.5130.5190.5860.5860.5350.5350.5490.1

5、6540.17390.16990.17010.15770.16930.1600R. VogtTable 1.Nuclear shape parameters taken from Ref. 2.where 1 when no nuclear effects are included. However, central collisions are ofthe greatest interest since it is there that high energy density effects are most likelyto appear. Central collisions contr

6、ibute larger than average values of ETto thesystem, in the tail of the ETdistribution, d/dET. We would like to determinewhich impact parameters are important in the high ETtail, i.e. what range of bmay be considered central. We now define the central fraction of the hard crosssection, Eq. (2), and t

7、he central fraction of the geometric cross section. We thendiscuss how the two are related.Considering only geometry with no nuclear effects, = 1 in Eq. (2), the inclu-sive production cross section of hard probes increases ashardharddAB= ppTAB(b)d2b(3)and the averagenumber of hard probes produced at

8、 impact parameter b isABbcbdbTAB(b) ,(6)0Relation to centrality3AbcbdbTA(b)(7)0would be used. Fig. 2, taken from Ref. 5, shows the increase of fABwith bcforseveral symmetric, AA, systems. Note that fAA 1 when bc 2RA. For example,hardif wechoose central= 0.1AB, this corresponds to bc= 2.05 fm in Au+A

9、u collisionshardand bc= 1.05 fm in O+O collisions. If we instead chose central= 0.01ABthenbc= 0.52 fm in Au+Au and bc= 0.33 fm in O+O collisions.Note however that fABis not the fraction of the geometric cross section whichincludes both hard and soft contributions. The geometric cross section in cent

10、ralcollisions is found by integrating the interaction probability over impact parameterup to bc,geo(bc) = 2bc0bdb1 exp(TABNN) .(8)The nucleon-nucleon inelastic cross section, NN, is 32 mb at SPS energies andgrows with energy. It is expected to be 60 mb at LHC energies. The fraction of4R. Vogt.(9)geo

11、In central collisions, where TABis large, the impact parameter dependence is simple,geo(bc) b2c. However, in peripheral collisions where the nuclear overlap becomessmall, geo(bc) deviates from the trivial b2occur until bsymmetric systems.cscaling. Deviations from this scaling donotc 2RAinFig. 2.The

12、central fraction of the hard cross section as a function of impactparameter cut bcfor several symmetric systems.Figure 3 shows the numerical result, Eq. (8), relative to the integral wherebcnegligible, for thedifferencesame systemsin the mostas in Fig.peripheral2. Wecollisionshave usedcanNN= 32 mb i

13、n Eq. (8).Abe expected if 60 mbwere used instead.The growth of the fraction of the geometric cross section isslower than that of the hard fraction, fAB. Indeed at bc 2RA, fgeoThe total geometrical cross section for a variety of colliding nuclei 0.75.is givenin Table 2.We have also calculated the imp

14、act parameter bccorresponding tofgeo= 0.05, 0.1, and 0.2 or the central 5%, 10% and 20% of all collisions. Theimpact parameter corresponding to fgeo= 0.2 is bc 1.04RAwhen symmetricsystems are considered. In asymmetric collisions, bc RAwhen fgeo= 0.2. Ifsmallercentrality cuts are imposed, the impact

15、parameters are reduced by factorsofRelation to centrality5geo(b)16+1616+2716+4016+6316+11016+19716+20827+2727+4027+6327+11027+19727+20840+4040+6340+11040+19740+20863+6363+11063+19763+208110+110110+197110+208197+197197+208208+2081.371.521.671.852.072.332.391.671.822.012.222.492.551.982.162.382.642.70

16、2.342.562.832.892.783.043.103.313.373.43fgeo= 0.12.743.043.343.704.144.664.783.353.654.014.454.985.093.954.324.765.285.404.695.135.665.785.566.096.216.626.746.86Table 2.Values of the geometric cross section and the impact parameter at whichfgeo= 0.05, 0.1 and 0.2 respectively for several colliding s

17、ystems.6R. VogtRelation to centrality7TAB(0) (mb1)16+1616+2716+4016+6316+11016+19716+20827+2727+4027+6327+11027+19727+20840+4040+6340+11040+19740+20863+6363+11063+19763+208110+110110+197110+208197+197197+208208+2080.1660.1780.1800.1850.1740.1670.1640.1910.1950.2010.1910.1840.1810.2020.2100.2040.1980

18、.1950.2200.2180.2130.2110.2220.2230.2210.2290.2290.229fgeo= 0.10.5220.5500.5580.5760.5650.5600.5550.5800.5910.6060.5990.5950.5910.6040.6230.6190.6180.6130.6420.6430.6440.6400.6480.6520.6490.6630.6620.664Table3.Valuesof TAB(0) and the fraction of the hard cross section for fgeo= 0.05,0.1 and 0.2 resp

19、ectively in several colliding systems.8R. VogthardNAB(0) = ppTAB(0) ,hard(10)hardwhere ppis the total hard process production cross section in pp interactions.The rate in the impact parameter interval 0 b bcis the ratio of the hard togeometric cross sections integrated over b,geo(bc)=hardppfgeo,(11)

20、using Eqs. (3), (6), (8), and (9). In Fig. 6, the ratiohardRAB(bc) hardpp=1fgeo(12)is shown for the same set of symmetric systems as in Figs. 24 as a function of bc.As a specific example, the average number of cNccppTAB(0) .(13)Relation to centrality9s = 200 GeV, with MRS Dparton distributions, cc pairs per Au+Au collision at b = 0. With a10% centrality cut, the average number of cNcppc0.1.(14)Since the central 10% of the geometric cross section corresponds to 40% of the hardcross section, there are 7.7 c10R. Vogt

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁