《压力管道类别与级别.pdf》由会员分享,可在线阅读,更多相关《压力管道类别与级别.pdf(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、压力管道类别与级别一、对输送流体的分类美国国家标准 ASME 压力管道规范(以下简称)根据被输送流体的性质和泄漏时造成的后果, 将化工厂和炼油厂管道输送的流体分为 D类、M 类和性质介于二者之间的第三类流体。D 类流体不易燃、无毒,并且在操作条件下对人类肌体无害;设计压力不超过 150lbf/in2();设设计温度在-20ºF(-29)至366ºF(186)之间。M 类流体有剧毒,在输送过程中如有少量泄漏到环境中, 被人吸入或接触人体时能造成严重的和难以治疗的伤害,即使迅速采取措施也无法挽救。 流体类别确定后即可按的有关章节具体要求对该流体的管道进行设计、施工和检验。二、中
2、石化对压力管道的类别划分1 中国石化关于 压力管道设计资格类别级别认可和安装单资格实施细则,对压力管道的类别划分如下表所示。压力管道的类别管道类别输送介质特征和设计条件1、有毒、可燃、易爆气体,设计压力pGA(长输管道)GA12、有毒、可燃、易爆气体,输送距离200km 且 DN300mm3、浆体,输送距离50km 且 DN150mm1 / 211、有毒、可燃、易爆气体,设计压力pGA22、GA1(2)范围以外的3、GA1(3)范围以外的GBGB1燃气热力1、毒性程度为极度危害介质2、甲、乙类可燃气体或甲类液体,且设计压力p(公用管道)GB2GC13、可燃流体、有毒流体设计压力p且设计温度 T
3、400GC(工业管道)4、流体且设计压力 p1、甲、乙类可燃气体或甲类液体,且设计压力p2、可燃流体、有毒流体p、T400GC23、非可燃流体、有毒流体p且 T4004、流体,p且 T400注:输送距离指产地、储存库、用户间的用于输送商品介质管道的直接距离。GB 5044职业性接触毒物危害程度分级规定的。GB 50160石油化工企业设计防火规范规定的。2 SH 3059 对管道的分级如下表。SH 30592001石油化工管道设计器材选用通则管道分级管道级别适用范围1、毒性程度为极度危害介质管道(苯管道除外);SHA2 / 212、毒性程度为高度危害介质的丙烯腈、光气、二硫化碳和氟化氢介质管道;
4、3、设计压力大于或等于的介质管道1、毒性程度为极度危害介质的苯管道;SHB2、毒性程度为高度危害介质管道(丙烯腈、光气、二硫化碳、氟化氢介质除外)3、甲类、乙类可燃气体和甲A 类液化烃、甲 B 类、乙 A 类可燃液体介质管道1、毒性程度为中度、轻度危害介质管道;SHC2、乙 B 类、丙类可燃液体介质管道SHDSHE设计温度低于-29的低温管道设计压力小于且设计温度高于或等于-29的无毒、非可燃介质管道注:毒性程度是根据职业性接触毒物危害程度分级(GB 504485)划分的。极度危害属于级,车间空气中有害物质最高容许浓度;高度危害属于级,最高容许浓度。极度危害的介质如苯、 氯乙烯、氯甲醚、氰化物
5、等;高度危害的介质如二硫化碳、 氯、丙烯腈、硫化氢、甲醛、氟化氢、一氢化碳等。详见GB 5044。甲类、乙类可燃气体是根据石油化工企业设计防火规范( GB 50160)中可燃气体的火灾危险性分类划分的。 甲类系指可燃气体与空气混合物和爆炸下限10% (体) ; 乙类是10%(体)。甲类可燃气体如乙炔、环氧乙烷、氢气合成气、硫化氢、乙烯、丙烯、甲烷、乙烷、丙烷、丁烷等。详见 GB 50160。可燃气体、液化烃、可燃液体的火灾危险性分类是根据GB 5016092 确定的,如下表。类别名称特征15时的蒸气压力0.1MPa举 例液化石油气、液化天然气、液化甲烷、液化丙烷等A液化烃的烃类液体及其他类似的
6、液甲体BA乙甲 A 类以外、闪点28汽油、戊烷、二硫化碳、石油醚原油等28闪点45可燃液体45闪点6060闪点120闪点120喷气燃料、煤油、丙苯、苯乙烯等-35 号轻柴油、环戊烷等轻柴油、重柴油、20 号重油、锭子油等蜡油、100 号重油、油渣、润滑油、变压器油等BA丙B甲可燃气体可燃气体与空气混合物的爆炸下限10%(体)3 / 21乙可燃气体与空气混合物的爆炸下限10%(体)混合物料应以其主导物料作为分级依据。当操作温度超过其闪点的乙类液体,应视为甲B 类液体;当操作温度超过其闪点的丙类液体,应视为乙 A 类液体。4 / 21一、压力管道基本概念(一)管道的概念根据国家标准工业金属管道设计
7、规范GB50316-2000 的规定,管道是由管道组成件、管道支吊架等组成,用以输送、分配、混合、分离、排放、计量或控制流体流动。国家标准工业金属管道工程施工及验收规范GB50235-97 的定义是:由管道组成件和管道支承件组成,用以输送、分配、混合、分离、排放、计量、控制和制止流体流动的管子、管件、法兰、螺栓连接、垫片、阀门和其他组成件或受压部件的装配总成。按流体与设计条件划分的多根管道连接成的一组管道称之为“管道系统”或“管系”。上述定义包含两个含义:(A)管道的作用:是用以输送、分配、混合、分离、排放、计量、控制和制止流体流动。1)流体:在有些标准中称为介质。流体可按状态或性质进行分类。
8、a)按状态分:气体;液体;液化气体:是指在一定压力下呈液态存在的气体;浆体:是指可燃、易爆、有毒和有腐蚀性的浆体介质。b)按性质分:火灾危险性; 是指可燃介质引起燃烧的危险性, 分为可燃气体、 液化气体和可燃液体。 有甲、乙、丙三类。爆炸性; 与空气混合后可能发生爆炸的可燃介质或在高温、 高压下可能引起爆炸的非可燃介质。毒性;按GB5044 分级。有剧毒(极度危害)和有毒(高度危害、中毒危害和轻度危害)两大类四个级别。腐蚀性。是指能灼伤人体组织并对管道材料造成损坏的物质。2)输送流体:依靠外界的动力(利用流体输送机械如压缩机、泵等给予的动能)或流体本身的驱动力(如介质本身的压力)将管道源头的流
9、体输送到管道的终点。3)分配流体:通过管系中的支管将流体分配到设计规定的多个预定的设备或用户。4)混合流体:将管系中来自不同支管中的流体在管道中进行混合,如稀释等。5)分离流体:将管道内部不同状态的流体通过支管进行分离,如汽液分离、油水分离等。6)排放流体:将管道内部流体通过支管进行排放,如超压放空、排放被分离的流体等。7)计量流体:通过设置于管道系统中的计量仪表对输送、分配的流体进行计量,如测量流量、压力、温度和粘度等。8)控制流体:通过设置于管道系统中的控制元件对管内流体的流动进行控制,如调压、减温、流体分配和切断等。(B)管道的构成:由管道组成件、管道支吊架(管道支承件)等组成,是管子、
10、管件、法兰、螺栓连接、垫片、阀门、其他组成件或受压部件和支承件的装配总成。1)管道组成件:指用于连接或装配成管道的元件,包括管子、管件、法兰、垫片、紧固件、阀门以及管道特殊件。所谓管道特殊件,是指非普通标准组成件。 是按工程设计条件特殊制造的管道组成件,包括膨胀节、特殊阀门、爆破片、阻火器、过滤器、挠性接头及软管等。2)管道支吊架:用于支承管道或约束管道位移的各种结构的总称,但不包括土建的结构。有固定支架、 滑动支架、 刚性吊架、 导向架、 限位架和弹簧支吊架等。 在国家标准 GB50235-97工业金属管道工程施工及验收规范中也称为管道支承件,包括管道安装件和附着件。a)管道安装件:指将负荷
11、从管子或管道附着件上传递到支承结构或设备上的元件,包括吊杆、弹簧支吊架、斜拉杆、平衡锤、松紧螺栓、支撑杆、链条、导轨、锚固件、鞍座、垫板、5 / 21滚柱、托座和滑动支架等。b)附着件:用焊接、螺栓连接或夹紧方法附装在管子上的零件,包括管吊、吊(支)耳、圆环、夹子、吊夹、紧固夹板和裙式管座等。管道组成件和支承件在我国现行压力管道法规中也统称为压力管道元件。(二)压力管道的概念:压力管道是管道中的一部分。 从广义上理解,所谓压力管道,应当是指所有承受内压或外压的管道,无论其管内介质如何。但从我国颁发压力管道安全管理与监察规定以后,“压力管道”便成为受监察管道的专用名词。在压力管道安全管理与监察规
12、定第二条中将压力管道定义为:“在生产、生活中使用的可能引起燃爆或中毒等危险性较大的特种设备”,国务院 2003 年 6 月 1 日颁发实施的 特种设备安全监察条例 中, 将压力管道进一步明确为“利用一定的压力的, 用于输送气体或者液体的管状设备, 其范围规定为最高工作压力大于或者等于 0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性,最高工作温度高于或者等于标准渄点液体介质,且公称直径大于25mm 的管道”。这就是说,现在所说的“压力管道”,不但是指其管内或管外承受压力, 而且其内部输送的介质是“气体、液化气体和蒸汽”或“可能引起燃爆、中毒或腐蚀的液体”物质。这里所
13、谓能燃爆、能中毒或有腐蚀性,具有如下内涵:介质的燃爆性:即介质具有可燃性和爆炸性, 在一定条件下能引起燃烧或爆炸, 酿成火灾和破坏。这些介质包括可燃气体、 液化烃和可燃液体等有火灾危险性的物质, 也包括容易引起爆炸的高温高压介质如蒸汽、 超过标准沸点的高温热水、 压缩空气和其他压缩气体等。 其中,可燃介质的火灾危险性根据石油化工企业设计防火规范GB50160 和建筑设计防火规范GBJ16,共分为甲、乙、丙三类。其中甲、乙类可燃气体与空气混合物的爆炸下限(体积)分别规定为:甲类可燃气体:10%;乙类可燃气体:10%。甲、乙和丙类可燃液体的分类见表1。表 1 液化烃、可燃液体的火灾危险性分类类 别
14、名称特征甲类A液化烃15 0CB可燃液体甲 A 以外的可燃液体,闪点28 0C乙类A可燃液体闪点28 0C 至45 0CB闪点45 0C 至60 0C丙类A可燃液体闪点60 0C 至120 0CB闪点1200C注:闪点低于 45 0C 的液体称为易燃液体;闪点低于环境温度的液体称为易爆液体。在 GBJ16 的规定中,属于甲类火灾危险性的可燃介质(或生产过程)还有:常温下能自行分解或在空气中氧化即能导致自燃或爆炸的物质; 常温下受到水或蒸汽作用能产生气体并引起燃烧或爆炸的物质;遇酸、受热、撞击、摩擦、催化及遇有机物或硫磺等易燃的无机物,极易引起燃烧或爆炸的强氧化剂; 受撞击、摩擦或与氧化剂、有机
15、物接触时能引起燃烧或爆炸的物质; 以及在密闭设备内操作温度等于或超过物质本身自燃点的生产。 属于乙类火灾危险性的介质主要是指不属于甲类火灾危险性的氧化剂和化学易燃固体,以及助燃气体。(B)介质的毒性:即介质具有使人中毒的特性。 当这些介质被人吸入或与人体接触后,能对人体造成伤害,甚至死亡。根据职业性接触毒物危害程度分级 GB5044 的规定,毒物按急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高允许浓度等六项指标,共分为极度危害、高度危害、中度危害和轻度危害四个等级。6 / 21极度危害介质有时也称之为“剧毒介质”,高度、中度和轻度危害介质则统称为“有毒介质“。剧毒介质
16、(流体)在我国国家标准工业金属管道工程施工及验收规范GB50235-97 中的解释是:如有极少量这类物质泄漏到环境中,被人吸入或与人体接触,即使迅速治疗, 也能对人体造成严重的和难以治疗的伤害的物质。 相当于现行国家标准 职业性接触毒物危害程度分级GB5044 中 I 级危害程度(极度危害)的毒物。据此可以将剧毒介质理解为就是极度危害介质。而有毒介质在标准中的解释是: 这类物质泄漏到环境中, 被人吸入或与人体接触,如治疗及时不致于对人体造成不易恢复的危害。不过,毒性程度相同的毒物,在具体如何对待的问题上各行业也存在差异。 如苯在职业性接触毒物危害程度分级GB5044 中被列入极度危害介质,在压
17、力管道安全管理与监察规定的解析中也作为极度危害介质的例子。而在石油化工有毒、 可燃介质管道工程施工及验收规范SH3501-2002 的管道分级中,苯则被与高度危害介质同等对待。列入 SHB 级之中。相反,丙烯腈、光气、二硫化碳和氟化氢等四种高度危害介质则在 SH3501-2002 中被与极度危害介质同样看待,列入 SHA 级管道之中。这不但对施工质量标准和在用管道的检验要求有影响, 同时对具体工程施工时划分许可证级别也是有影响的。 如承担有苯介质的管道安装工作时,若苯被视为极度危害介质,施工单位应持 GC 1 级安装许可证,而若作为高度危害介质时,则持证级别与管道的设计压力和设计温度有关。对于
18、这个问题的理解可以从毒物危害性分级的原则进行解释: 国家标准 职业性接触毒物危害程度分级GB5044-85 对具体毒物的分级是以列举常见的 56 种毒物在某些行业中的危害程度分级进行表达的。但该标准同时指出:对接触同一毒物的其他行业 (该标准表 2 中未列出的)的危害程度,可根据车间空气中的毒物浓度、中毒患病率、接触时间的长短,划定级别。凡车间空气中毒物浓度经常达到 TJ3679工业企业设计卫生标准中所规定的最高容许浓度值,而其患病率或症状发生率低于本分级标准中相应的值,可降低一级。 所以,对每种具体物质, 国家标准和专业标准在划分危害等级时存在差异是正常的。 因为除了致癌性和空气中最高容许浓
19、度外, 其他四项指标都与生产过程和操作特点有关。 石油、化工和石油化工等以管道输送介质为主的生产过程, 有毒物质处于连续、密闭状况下流动,其危害程度取决于因事故致使毒物与人体接触, 或因经常性泄漏引起职业性慢性危害的机率, 通常要低于开放性生产过程。 因此, 在压力管道设计时具体确定毒物危害等级应主要以车间空气中毒物浓度、中毒患病率、接触时间长短来划定。上面提到的毒物危害性分级指标中,关于车间空气中毒物的最高允许浓度规定如下:极度危害:最高允许浓度小于0 .1 mg/m3;高度危害:最高允许浓度为0 .1 mg/m3 1 .0 mg/m3。根据工业企业设计卫生标准 (TJ3679)的规定,苯、
20、丙烯腈、光气、二硫化碳和氟化氢等五种毒物在车间空气中和居住区大气中的最高允许浓度见表2:表 2几种毒物的最高允许浓度毒物名称苯丙烯腈光气二硫化碳氟化氢车间空气允许浓度居住区大气允许浓度(日平均 mg/m3)(一次)0.007(一次 0.02)由表 2 可见,苯在车间空气中的最高允许浓度远远高于极度危害介质。 同时,根据工业生产中管道输送的连续性、 密闭性特点, 以及苯与操作人员的接触时间长短和中毒患病率的情况分析,苯也不应属于极度危害介质的范围。 所以,实际工作中确定介质的毒害程度应以设计7 / 21文件确定的毒物性质或设计文件中指明的施工验收规范为准。另外,关于接触时间长短我国尚未制定有关标
21、准,美国政府工业卫生专家会议(ACGIH)推荐的三种接触阈限值可作为参考:1)以正常 8 小时工作日或 40 小时工作周的时间加权平均限值为指标, 在此浓度下,反复接触对全部人员都不致产生不良影响;2)以短时间接触(每次不超过15 分钟,每天不超过4 次,每次间隔不少于1 小时)的时间加权平均限值为指标,在此浓度下,人短时间连续接触不致引起刺激作用、 慢性或不可逆组织病理变化、麻醉而增加意外伤害、自救能力减退或工作效率明显降低等;3)上限值是指即使在瞬间也不得超过的最高浓度。(C)介质的腐蚀性:是指能灼伤人体组织并对管道材料造成损坏的物质,如酸、碱以及其它能引起材料损害的流体如氢、硫化氢等。(
22、三)压力管道的安全监察范围根据压力管道安全管理与监察规定 ,属于安全监察范围的压力管道是具备下列条件之一的压力管道及其附属设施、安全保护装置等。1)毒性程度为极度危害的介质,不论压力,温度及状态;2)火灾危险性为甲、乙类的介质,不论压力、温度及状态;3)最高工作压力大于、等于0. 1 MPa 的气(汽)体、液化气体介质,未规定性质及温度,但压力管道安全管理与监察规定中规定不属于监察范围的除外。4)最高工作压力大于、等于0.1 MPa 的易燃 、易爆 、有毒,有腐蚀性介质或最高工作温度高于、等于标准沸点的液体介质。压力管道安全管理与监察规定中规定以下四类管道不属于监察范围: a)设备本体所属管道
23、。 b)军事装备,交通工具和核装置中的管道。 c) 无毒、 不可燃、 无腐蚀性的气体, 公称直径小于 150mm 且最高工作压力小于 1.6 MPa的管道。这里,所谓压力管道所属设施及安全保护装置的定义是:a)附属设施主要指用于压力管道的管道用设备、支吊架、阴极保护装置等。b)安全保护装置主要指超温、超压控制装置和报警装置等。注:最近颁发的压力管道使用登记管理规则 (试行)中对压力管道、附属设施和安全保护装置的界定,明确为:a)压力管道指由管道组成件、管道支承件、安全保护装置和附属设施等组成的系统。用于输送气体或者液体的管状设备;b)附属设施指阴极保护装置、压气站、泵站、阀站、调压站、监控系统
24、等;c)安全保护装置指压力管道上连接的安全阀、压力表、爆破片和紧急切断阀等。二、压力管道的主要特点和结构要求(一)压力管道的特点一个管道系统,为了完成流体的输送、分配、混合、分离、排放、计量或控制流体流动的功能,必须与相应的动力设备、反应设备、储存设备、分离设备、换热设备、控制设备等连接在一起,形成一个系统,使管内流体具有一定的压力、温度和流量,完成设计预定的任务。同时,不同类别的压力管道,由于材料、结构和敷设形式不同,其特点也有所不同:(A)工业管道的特点1)数量多,管道系统大,车间内管道布置交叉、紧凑;2)管道组成件和支承件的材质、品种、规格复杂,质量均一性差;8 / 213)运行过程受生
25、产过程波动影响,运行条件变化多,如热胀冷缩、交变载荷、温度和压力波动等;4)腐蚀和破坏机理复杂,材料失效模式多。(B)长输管道和公用管道的特点1)管道敷设长度大,跨越地区多,地形地质复杂;2)埋地敷设多,缺陷检测难度大;3)容易遭受意外损伤。(二)压力管道的结构要求压力管道由于输送的流体具有毒性、燃爆性和腐蚀性,且又有高温、高压、低温等特殊操作条件,使其具有相当大的危险性。因此,压力管道系统结构应当具备下列条件:耐压强度:承受管内流体作用于管道上的压力 (内压或外压) 、温度所引起的应力及其长期、反复的影响,如蠕变和疲劳等;密封性:阻止管道内部流动的流体泄漏到管道外部空间或流体中;耐腐蚀性:承
26、受管内流体对管道材料的腐蚀作用。 管道材料的耐腐蚀等级分为4 级,以年腐蚀速率衡量:充分耐腐蚀;耐腐蚀0.05;尚耐腐蚀0.1;不耐腐蚀;柔性:管道的柔性是反映管道变形难易程度的一个物理概念。 管道在设计条件下工作时, 因热胀冷缩、端点附加位移、管道支承设置不当等原因会产生应力过大、 变形、泄漏或破坏等影响正常运行的情况。 管道的柔性就是管道通过自身变形吸收因温度变化发生尺寸变化或其他原因所产生的位移,保证管道上的应力在材料许用应力范围内的性能。为了满足上述条件, 管道系统的管道组成件必须使用耐介质腐蚀, 有能够在设计规定温度下承受介质作用压力的材料, 且有相应的壁厚和密封结构。 同时整个管道
27、系统应有适当的支承。在一些标准规范中,经常出现“剧烈循环条件”这一名词。根据工业金属管道设计规范GB50316-2000 的解释,剧烈循环条件是指:管道计算的最大位移应力范围超过 0.8 倍许用的位移应力范围和当量循环数大于7000 或由设计确定的产生相等效果的条件。 所谓“位移应力范围”是指:由管道热膨胀产生的位移所计算的应力。计算的最大位移应力范围就是从最低温度到最高温度的全补偿值进行计算的应力。 设计对剧烈循环条件下运行的管道, 在管道组成件的选用、管子和管件的最小厚度、无损检测的要求等均有特殊的规定。三、压力管道的分类和分级管道的用途广泛, 品种繁多。 不同领域内使用的管道, 其分类方
28、法也不同。 一般可以按用途、主体材料、敷设状态和输送介质等管道使用特性进行分类。具体情况可见图1。在一般法规、标准、规范中,为了便于设计、施工验收和使用管理和检验,往往根据介质的特性和设计参数采用综合分类、分级的方法,同时,在各行业的设计规范,施工验收规范和维修、检验规程之间,对管道的分级或分类尚存在差异。如:国家标准 工业金属管道设计规范 GB50316 中的流体根据状态、 性质和设计参数分为A1、A2、B、C、D 五类。A1 类为剧毒介质;A2 类为有毒介质 B 类为可燃介质;C 类、D 类为非可燃、无毒介质,其中设计压力小于等于1MPa,且设计温度为-29186的为 D 类。化工、石油化
29、工和电力等行业的施工及验收规范对管道的分级或分类如下:化工行业标准化工金属管道工程施工及验收规范HG2022595 按流体特性和设计参数分为 A、B、C、D 四类。基本与国家标准一致,但将有毒介质管道划入B 类管道。石油化工行业标准石油化工有毒、可燃介质管道工程施工及验收规范SH35012002 按流体特性和设计参数分为SHA、SHB、SHC、SHD 四级,如表 3。9 / 21表 3SH3501-2001 管道分级管道级别适 用 范 围SHA1 毒性程度为极度危害介质管道(苯管道除外)2 毒性程度为高度危害介质的丙烯腈、光气、二硫化碳和氟化氢介质管道3 设计压力大于或等于 10.0MPa 的
30、介质管道SHB1 毒性程度为极度危害介质的苯管道2 毒性程度为高度危害介质管道(丙烯腈、光气、二硫化碳和氟化氢管道除外)3 甲类、乙类可燃气体和甲A 类液化烃、甲 B 类、乙 A 类可燃液体介质管道SHC1 毒性程度为中度、轻度危害介质管道2 乙 B 类、丙类可燃液体介质管道SHD设计温度低于-29的低温管道电力行业标准电力建设施工及验收技术规范 (管道篇)DL503194 按设计压力分为高压、中压和低压三级管道。设计压力大于 8MPa 的为高压管道;设计压力大于 1.6MPa,小于等于 8MPa 的为中压管道;设计压力小于等于1.6MPa 的为低压管道。压力管道安全管理与监察规定 将压力管道
31、分工业管道、 公用管道和长输管道三类。 这主要是从管道的用途和地域特性进行的分类,其具体定义是:(1)工业管道:企业、事业单位所属的用于输送工艺介质的工艺管道、公用工程管道及其他辅助管道。其地域特性是一个企业或事业单位内使用的管道;(2)公用管道:城市或乡镇范围内用于公用事业或民用的燃气管道和热力管道,其地域特性是一个城市或乡镇范围内使用的管道;(3)长输管道:产地、储存库、使用单位间用于输送商品介质的管道,其地域特性是跨地区(跨省、跨地市)使用的管道。铸铁管道碳钢管道合金钢管道不锈钢管道有色金属管道金属复合管道混凝土管道陶瓷管道玻璃管道塑料管道非金属复合管道金属与非金属复合管道架空管道 地沟
32、敷设管道埋地管道 超高压管道(42MPa) 高压管道(1042MPa)介质压力中压管道(1.610MPa)低压管道(1.6MPa)真空管道10 / 21 高温管道 (200)介质温度 常温管道(29200)低温管道(29) 剧毒管道(极度危害) 介质毒性有毒管道(非极度度危害) 无毒管道可燃介质管道非可燃介质管道腐蚀性介质管道非腐蚀性介质管道 工业管道 公用管道 长输管道图 1管道分类目前我国一些综合性特大型企业往往是由许多工厂联合组成的, 不但占地面积大, 而且工厂之间的联系多, 工厂和职工生活区之间也无明显界限。 因而使工厂与工厂之间的原料、 动力、产品输送管道,以及工厂与居民生活区之间的
33、民用燃气、 热力供应管道的类别难以界定。 特别是一些民用的公用管道直接来自工厂的工业管道系统, 其界限就更难以划分。 由于他与压力管道的安全监察有关,在具体问题上还要根据具体情况研究处理。在安全监察范围内的压力管道, 根据压力容器压力管道设计单位资格许可与管理规则 和压力管道安装单位资格认可实施细则的规定,压力管道的具体分类、分级如下:(一)长输管道(A)符合下列条件之一的长输管道为GA1 级:1)输送有毒、可燃、易爆气体介质,设计压力1.6MPa 的管道;2)输送有毒、可燃、易爆液体介质,输送距离200km,且公称直径300mm 的管道;3)输送浆体介质,输送距离大于等于50km,且公称直径
34、150mm 的管道;(B)符合下列条件之一的长输管道为GA2 级:1)输送有毒、可燃、易爆气体介质,设计压力1.6MPa 的管道;2)GA1(2)范围以外的管道;3)GA1(3)范围以外的管道。(二)公用管道(A)燃气管道;(B)热力管道。(三)工业管道(A)符合下列条件之一的工业管道为GC1 级:1) 输送 GB 5044 职业性接触毒物危害程度分级 中规定毒性程度为极度危害介质的管道;2)输送 GB50160石油化工企业设计防火规范及GBJ16建筑设计防火规范中规定的火灾危险性为甲、 乙类可燃气体或甲类可燃液体介质且设计压力P4.0 MPa 的管道;11 / 213)输送可燃流体介质、有毒
35、流体介质,设计压力 4.0 MPa 且设计温度 400 0C 的管道;4)输送流体介质且设计压力P10. 0 MPa 的管道。(B)符合以下条件之一的工业管道为GC2 级:1)输送 GB50160 石油化工企业设计防火规范及GBJ16 建筑设计防火规范中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质且设计压力P4. 0 MPa 的管道;2)输送可燃流体介质、有毒流体介质,设计压力 4.0 MPa,且设计温度 400 0C 的管道;3)输送非可燃流体介质、无毒流体介质,设计压力10 MPa,且设计温度400 0C 的管道;4)输送流体介质,设计压力10 MPa,且设计温度 400 0C 的
36、管道。(C)符合以下条件之一的GC2 级管道划分为 GC3 级:1)输送可燃流体介质、有毒流体介质,设计压力 1. 0 MPa ,且设计温度 400 0 C 的管道;2)输送非可燃流体介质、无毒流体介质,设计压力 4.0 MPa 且设计温度400 0C 的管道。工业管道的级别划分可用图2 至 图 6 表示。压力(MPa)GC1(1) 0温度 ()图 2输送毒性程度为极度危害介质的管道压力( MPa)GC1(2) GC2(1)0温度()图 3 输送甲、乙类可燃气体或甲类可燃液体的管道压力(MPa)GC1(4) GC2(4) GC1(3) 4.012 / 21 1.0 GC3(1) GC2(2)
37、0 400温度图 4 输送可燃流体介质、有毒流体介质管道压力 MPa GC1(4)10.0GC2(4) GC2(3) GC3(2) 0 400图 5输送非可燃流体介质、无毒流体介质管道设计压力介质特性无毒,非可燃流体有毒,非甲、乙类可燃气体,非甲类可燃液体甲类可燃液体极度危害流体P1MPa T400GC3(2)400 GC2 (4)T400GC3(1)GC2(1)GC1(1)P4MPa400GC2(2)P4MPa400GC213 / 21温度甲、乙类可燃气体,(3)400GC1(3)GC1(2)P10MPaGC1(4)GC1(4)GC1(4)图 6GC 类压力管道分级图这里要注意的是:工业管道
38、方面在压力管道安装单位资格认可实施细则 与压力容器压力管道设计单位资格许可与管理规则 中的分级略有不同, 考虑到压力管道安装单位的特点,压力管道安装单位资格认可实施细则 将压力管道设计单位资格认证与管理办法 中的“GC2”级又细分为 GC2、GC3 两级。其主要理由是目前存在一些规模较小只从事GC3 级别压力管道安装的单位。管道分级是对受监察管道来说的, 对于受监察范围以外的管道, 就不在分级范围内。如工业生产中非可燃流体介质、 无毒流体介质管道中如果是沸点温度以下的水, 即使压力再高,也不属于压力管道,自然也不在分级范围内,不能把它视为GC3 级管道。四、压力管道的失效和事故(一)压力管道失
39、效的原因压力管道“失效”一般是指压力管道不能发挥原有效能的现象, 可分为自然失效和异常失效两种。 由于压力管道运行在内部介质和周围环境的影响之下, 不可避免地会产生温度和压力循环、腐蚀、振动以及材料金相组织变化等影响材料性能和连接接头密封性能的问题, 因此任何管道都有一定的使用寿命, 自然失效就是在压力管道达到使用寿命时发生的失效现象。 自然失效可以通过定期检验或失效分析进行事先控制, 以防止事故的发生。 但是,在用压力管道由于在设计、制造、安装和运行中存在各种问题会导致异常失效, 造成突发性破坏事故的发生。其原因主要有:(A)职工素质差,违反操作规程运行,致使运行条件恶化,包括超压、超温、腐
40、蚀性介质超标、压力温度异常脉动等;使用压力和温度是压力管道设计、选材、 制造、安装的依据。操作压力和温度超过规定将导致管壁应力值的增加或材料力学性能的下降,尤其是在焊缝、法兰、弯头、阀门、异径管、补偿器等几何结构不连续处的局部应力和峰值应力会大幅增加, 成为蠕变破坏的源头。 过低的操作温度则会引起材料韧性下降,允许的临界裂纹尺寸减小,从而有可能导致脆性破坏。超温超压还会导致管道接头泄漏。管道往往由于下列原因而产生交变载荷:1)间断输送介质而对管道反复加压和卸压、升温和降温;2)运行中压力波动较大;3)运行中温度发生周期性变化,使管壁产生反复性温度应力变化;4)因其它设备、支承的交变外力和受迫振
41、动。在反复交变载荷的作用下, 管道将发生疲劳破坏。 主要是金属的低周疲劳, 其特点是应力较大而交变频率较低。 在几何结构不连续的地方和焊缝附近存在应力集中, 有可能达到和超过材料的屈服极限。 这些应力如果交变地加载和卸载, 将使受力最大的晶粒产生塑性变形并逐14 / 21渐发展为细微的裂纹。随着应力周期变化,裂纹也会逐步扩展,最后导致破坏。交变载荷也会导致管道组成件和焊缝内部原有缺陷的扩大和管道连接接头的泄漏。(B)设计、制造、施工存在缺陷,如管道柔性不符合要求,材料选用不当或用材错误,存在焊接或冶金超标缺陷,焊接或组装不合理造成应力过大,管道支承系统不合理等;管道在投用前存在的原始缺陷会造成
42、材料的低应力脆断。 介质和环境的侵害、操作不当、维护不力等原因,往往会引起材料性能恶化、 材料损伤或破裂,或使管道连接接头发生介质泄漏,最终使压力管道失效,导致火灾、爆炸和中毒、窒息等人身事故的发生。(C)维修失误,管道上的严重缺陷或损伤未能被检测发现,或缺少科学评价,以及不合理的维修工艺造成新的缺陷和损伤等;(D)外来损伤造成破坏,如地震、大风、洪水、雷击和其它机械损伤和人为破坏等。压力管道的破坏型式很多。 按破坏时的宏观变形量可分为韧性破坏 (延性破坏)和脆性破坏两大类。按破坏时材料的微观断裂机制可分为韧窝断裂、 解理断裂、沿晶断裂和疲劳断裂等型式。通常,在现场采用宏观分类和断裂特征相结合
43、的方法进行分类, 有韧性破坏、脆性破坏、腐蚀破坏、疲劳破坏、蠕变破坏等。(E)腐蚀破坏压力管道的腐蚀是由于受到内部介质及外部环境介质的化学或电化学作用而发生的破坏。 也包括机械等原因的共同作用结果。不合理的操作会导致介质浓度的变化,加剧腐蚀破坏。压力管道的腐蚀破坏的形态有全面腐蚀、 局部腐蚀、应力腐蚀、腐蚀疲劳和氢损伤等。 其中应力腐蚀往往在没有先兆的情况下突然发生,故其危害性更大。1)全面腐蚀全面腐蚀也称均匀腐蚀。 是在管道较大面积上产生的程度基本相同的腐蚀。 管道内部表面主要遭受输送腐蚀性介质的腐蚀,而管道外部则主要遭受大气锈蚀。管道的全面腐蚀往往因使用条件的恶化而加剧。 腐蚀介质的成分、
44、含水量、气相或液相的不同、流速和流动状态、颗粒大小都会影响管道腐蚀失效的程度。 腐蚀介质含量的超标或原料性质的劣化会对压力管道产生危害。大气腐蚀会使管道组成件外部遭受损坏,影响管道组成件的强度和密封性。如不及时维护,也会引起事故。2)局部腐蚀局部腐蚀是发生在管道材料局部位置的腐蚀现象。a)点腐蚀:集中在金属表面个别小点上的深度较大的腐蚀,也称孔蚀。奥氏体不锈钢在接触含氯离子或溴离子的介质时最容易发生点腐蚀。b)缝隙腐蚀:当管道输送的介质为电解质溶液时, 在管道内表面的缝隙处,如法兰垫片处、单面焊的未焊透处等, 均会发生缝隙腐蚀。 缝隙腐蚀往往是由于缝隙内和周围溶液之间氧浓度或金属离子浓度存在差
45、异造成。c)奥氏体不锈钢焊接接头的腐蚀:晶间腐蚀: 晶间腐蚀是腐蚀局限在晶间和晶间附近, 而晶粒本身腐蚀较小的一种腐蚀形态。腐蚀机理是“贫铬理论”,即由于贫铬的晶间区处于活化状态,作为阳极,它与晶粒之间形成腐蚀原电池,其结果将造成晶粒脱落或使材料机械强度降低。 铁素体选择性腐蚀:在某些强腐蚀介质中,奥氏体不锈钢焊缝处的 铁素体相会被腐蚀或分解为 相,结果呈海绵状而使焊接接头遭受破坏。刀口腐蚀:用 Ni 及 Ti 稳定的奥氏体不锈钢,在氧化性介质中发生的刀口状腐蚀。3)应力腐蚀金属材料在拉应力和特定腐蚀介质的共同作用下发生的腐蚀称为应力腐蚀。 主要由焊接、 冷加工和安装时的残余应力和管道内部的腐
46、蚀性介质引起。 应力腐蚀的裂纹呈枯树支状, 大体15 / 21上沿垂直于拉应力的方向发展。 裂纹的微观形态有穿晶型、 晶间型和二者兼有的混合型。 高强钢管道在 H2S 含量超过一定值,并伴有水分时, 会大大增加管壁应力腐蚀开裂的可能性。当焊缝硬度值超过 HB200,含 H2S 超标时,极易导致焊缝的应力腐蚀。碱脆:是金属在碱液中的应力腐蚀。碳钢、低合金钢和不锈钢等均可发生碱脆。不锈钢的氯离子腐蚀: 氯离子对不锈钢产生的应力腐蚀。 导致氯离子腐蚀的氯离子临界浓度随温度上升而下降,高温下,氯离子浓度只要达到10 ppm 即可引起破裂。管道法兰连接处的垫片、外部的保温材料和支、 吊架的垫层等材料中含
47、氯离子的成分过高, 也会导致氯离子腐蚀。不锈钢连多硫酸腐蚀: 在石油炼制过程中,钢材受硫化氢腐蚀生成硫化铁, 停车后管道内部与空气中的氧及水反应生成多硫酸,在不锈钢管道的残余应力较大处即会产生应力腐蚀。以加氢脱硫装置为典型,不锈钢连多硫酸的应力腐蚀破坏最近引人注目。硫化物应力腐蚀: 金属在同时含硫化氢和水的介质中发生的应力腐蚀。 碳钢和低合金钢在2040温度范围内对硫酸的敏感性最大。 奥氏体不锈钢的硫化物应力腐蚀大多发生在高温环境。 在含硫化氢和水的介质中, 如同时含有醋酸, 或二氧化碳和氯化钠, 或磷化氢, 或砷、硒、碲的化合物或氯离子,都会对腐蚀起促进作用。4)腐蚀疲劳腐蚀疲劳是交变应力与
48、化学介质共同作用下发生的腐蚀开裂。压力管道的疲劳源有机械激振、流体喘振、交变热应力、压力循环以及风振、地震等。腐蚀疲劳裂纹往往有多条但无分支,这是与应力腐蚀裂纹的区别。腐蚀疲劳裂纹一般是穿晶的。5)氢损伤氢渗透进入金属内部造成金属性能劣化称为氢损伤。包括氢鼓泡、氢脆、脱碳和氢腐蚀。氢鼓泡主要发生在含湿硫化氢的介质中,当氢原子向钢中渗透扩散时,遇到了裂纹、分层、空隙、夹渣等缺陷就聚集起来合成氢分子, 使体积膨胀。当这些缺陷在钢材表面时就会形成鼓泡。氢不论是以什么方式进入钢都会引起钢材氢脆, 使钢材的延伸率、断面收缩率显著下降。 高强度钢表现更加严重。钢中的渗碳体在高温下与氢气作用生成甲烷, 反应
49、结果使钢材表面层的渗碳体减少, 使碳从邻近的尚未反应的金属层逐渐扩散到这一反应区, 于是有一定厚度的金属因缺碳而变为铁素体,出现脱碳现象。脱碳的结果使钢材的表面强度和疲劳极限降低。高温高压氢对钢材作用的结果使其机械性能变劣, 强度、韧性显著降低,称为氢腐蚀。 在上述条件下, 氢分子扩散到钢的表面并产生吸附, 其中部分被吸附的氢分子分离为氢原子和氢离子,经化学吸附,然后直径很小的氢原(离)子透过表面层固溶到金属内。因溶入的氢原子通过晶格和晶界向钢内扩散, 产生化学反应形成甲烷聚集在晶界原有微观空隙内, 反应过程使该区域的碳浓度降低, 促使其他位置上的碳向其扩散补充, 从而使甲烷量不断增多形成局部
50、压力,最后发展为裂纹。聚集在钢材表面的形成鼓泡,产生脱碳。(F)冲蚀破坏管道内部介质的长期、 高速流动会使管道组成件内壁减薄或密封副遭受破坏, 影响其耐压强度和密封性能。 随着使用时间的延长, 由内壁减薄造成的耐压能力下降或密封副损坏而形成的泄漏便会成为事故的根源。(二)破坏特征由于管道破坏的起因和型式不同,所以破坏的特征也有所区别。(A)韧性破坏是材料不存在明显的缺陷或脆化,而是由于超压导致的破坏。其特征有:1)发生明显变形,一般不产生碎片。破坏时直径增大或局部鼓胀,管壁减薄。2)实际爆破压力与理论值相近。16 / 213)断口呈灰暗纤维状,无金属光泽,断面有剪切唇。4)断口纤维区之外呈放射