2021年初二上册数学公开课教案范文.docx

上传人:ylj18****41534 文档编号:21088285 上传时间:2022-06-18 格式:DOCX 页数:21 大小:22.17KB
返回 下载 相关 举报
2021年初二上册数学公开课教案范文.docx_第1页
第1页 / 共21页
2021年初二上册数学公开课教案范文.docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2021年初二上册数学公开课教案范文.docx》由会员分享,可在线阅读,更多相关《2021年初二上册数学公开课教案范文.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021年初二上册数学公开课教案2021年初二上册数学公开课教案1 教学目标: 学问与技能 1.驾驭直角三角形的判别条件,并能进行简洁应用; 2.进一步发展数感,增加对勾股数的直观体验,培育从实际问题抽象出数学问题的实力,建立数学模型. 3.会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论. 情感看法与价值观 敢于面对数学学习中的困难,并有独立克服困难和运用学问解决问题的胜利阅历,进一步体会数学的应用价值,发展运用数学的信念和实力,初步形成主动参加数学活动的意识. 教学重点 运用身边熟识的事物,从多种角度发展数感,会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题

2、应用哪个结论. 教学难点 会辨析哪些问题应用哪个结论. 课前打算 标有单位长度的细绳、三角板、量角器、题篇 教学过程: 复习引入: 请学生复述勾股定理;运用勾股定理的前提条件是什么? 已知ABC的两边AB=5,AC=12,则BC=13对吗? 创设问题情景:由课前打算好的一组学生以小品的形式演示教材第9页古埃及造直角的方法. 这样做得到的是一个直角三角形吗? 提出课题:能得到直角三角形吗 讲授新课: 如何来推断?(用直角三角板检验) 这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系? 就是说,假如三角形的三边为,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满意较小

3、两边的平方和等于较大边的平方时) 接着尝试:下面的三组数分别是一个三角形的三边长a,b,c: 5,12,13;6,8,10;8,15,17. (1)这三组数都满意a2+b2=c2吗? (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? 直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形. 满意a2+b2=c2的三个正整数,称为勾股数. 例1一个零件的形态如左图所示,按规定这个零件中A和DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习: 下列几组数能否作为直角三角形的三边长?说说你的理

4、由. 9,12,15;15,36,39; 12,35,36;12,18,22. 已知ABC中BC=41,AC=40,AB=9,则此三角形为_三角形,_是角. 四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积. 习题1.3 课堂小结: 直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形. 满意a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数. 1.3.勾股定理的应用 教学目标 教学学问点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简洁的实际问题. 实力训

5、练要求:1.学会视察图形,勇于探究图形间的关系,培育学生的空间观念. 2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的实力及渗透数学建模的思想. 情感与价值观要求:1.通过好玩的问题提高学习数学的爱好. 2.在解决实际问题的过程中,体验数学学习的好用性,体现人人都学有用的数学. 教学重点难点: 重点:探究、发觉给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题. 难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题. 教学过程 1、创设问题情境,引入新课: 前几节课我们学习了勾股定理,你还记得它有什么作用吗? 例如:欲登12米高的建筑物,为平安须

6、要,需使梯子底端离建筑物5米,至少需多长的梯子? 依据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在RtABC中,AB2=AC2+BC2=122+52=132;AB=13米. 所以至少需13米长的梯子. 2、讲授新课:、蚂蚁怎么走最近 出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,须要爬行的的最短路程是多少?(的值取3). (1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路途,你觉得哪条路途最短呢?(小组探讨) (2)如图,将圆柱侧面剪开绽开成一个长方形,

7、从A点到B点的最短路途是什么?你画对了吗? (3)蚂蚁从A点动身,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组探讨,公布结果) 我们知道,圆柱的侧面绽开图是一长方形.好了,现在咱们就用剪刀沿母线AA将圆柱的侧面绽开(如下图). 我们不难发觉,刚才几位同学的走法: (1)AAB;(2)ABB; (3)ADB;(4)AB. 哪条路途是最短呢?你画对了吗? 第(4)条路途最短.因为“两点之间的连线中线段最短”. 、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测DAB=90,CBA=90.连结BD或AC,也就是要检测DAB和CBA是否为直角三角

8、形.很明显,这是一个需用勾股定理的逆定理来解决的实际问题. 、随堂练习 出示投影片 1.甲、乙两位探险者,到沙漠进行探险.某日早晨800甲先动身,他以6千米/时的速度向东行走.1时后乙动身,他以5千米/时的速度向北行进.上午1000,甲、乙两人相距多远? 2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长? 1.分析:首先我们须要依据题意将实际问题转化成数学模型. 解:(如图)依据题意,可知A是甲、乙的动身点,1000时甲到达B点,则AB=26=12(千米);乙到达C点,则AC=15=5(千米).

9、在RtABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米. 2.分析:从题意可知,没有告知铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时. 解:设伸入油桶中的长度为x米,则应求最长时和最短时的值. (1)x2=1.52+22,x2=6.25,x=2.5 所以最长是2.5+0.5=3(米). (2)x=1.5,最短是1.5+0.5=2(米). 答:这根铁棒的长应在23米之间(包含2米、3米). 3.试一试(课本P15) 在我国古代数学著作九章算术中记载了一道

10、好玩的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中心有一根新生的芦苇,它高出水面1尺.假如把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少? 我们可以将这个实际问题转化成数学模型. 解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得 (x+1)2=x2+52,x2+2x+1=x2+25 解得x=12 则水池的深度为12尺,芦苇长13尺. 、课时小结 这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发觉用数学学问解决这些实际问题,更为重要的是将它们转化成数学模型. 、课后作业

11、课本P25、习题1.52 2021年初二上册数学公开课教案2 教学目标 1、理解并驾驭等腰三角形的判定定理及推论 2、能利用其性质与判定证明线段或角的相等关系. 教学重点:等腰三角形的判定定理及推论的运用 教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程: 一、复习等腰三角形的性质 二、新授: I提出问题,创设情境 出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标记)沿南偏东60方向走一段距离到C处时,测得ACB为30,这时,地质专家测得AC的长度就可知河流宽度

12、. 学生们很想知道,这样估测河流宽度的依据是什么?带着这个问题,引导学生学习“等腰三角形的判定”. II引入新课 1.由性质定理的题设和结论的改变,引出探讨的内容在ABC中,苦B=C,则AB=AC吗? 作一个两个角相等的三角形,然后视察两等角所对的边有什么关系? 2.引导学生依据图形,写出已知、求证. 2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称). 强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”. 4.引导学生说出引例中地质专家的测量方法的依据. III例题与练习 1.如图2 其中ABC是等腰三角形的

13、是 2.如图3,已知ABC中,AB=AC.A=36,则C_(依据什么?). 如图4,已知ABC中,A=36,C=72,ABC是_三角形(依据什么?). 若已知A=36,C=72,BD平分ABC交AC于D,推断图5中等腰三角形有_. 若已知AD=4cm,则BC_cm. 3.以问题形式引出推论l_. 4.以问题形式引出推论2_. 例:假如三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形. 分析:引导学生依据题意作出图形,写出已知、求证,并分析证明. 练习:5.(l)如图6,在ABC中,AB=AC,ABC、ACB的平分线相交于点F,过F作DE/BC,交AB于点D,交AC于E.问图

14、中哪些三角形是等腰三角形? (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗? 练习:P53练习1、2、3。 IV课堂小结 1.判定一个三角形是等腰三角形有几种方法? 2.判定一个三角形是等边三角形有几种方法? 3.等腰三角形的性质定理与判定定理有何关系? 4.现在证明线段相等问题,一般应从几方面考虑? V布置作业:P56页习题12.3第5、6题 2021年初二上册数学公开课教案3 因式分解 教学目标: 1、理解运用平方差公式分解因式的方法。 2、驾驭提公因式法和平方差公式分解因式的综合运用。 3、进一步培育学生综合、分析数学问题的实力。 教学重点: 运用平方差公式分解

15、因式。 教学难点: 高次指数的转化,提公因式法,平方差公式的敏捷运用。 教学案例: 我们数学组的观课议课主题: 1、关注学生的合作沟通 2、如何使学困生能主动参加课堂沟通。 在细心备课过程中,我设计了这样的自学提示: 1、整式乘法中的平方差公式是_,如何用语言描述?把上述公式反过来就得到_,如何用语言描述? 2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么? -x2+y2-x2-y24-9x2 (x+y)2-(x-y)2a4-b4 3、试总结运用平方差公式因式分解的条件是什么? 4、仿按例4的分析及旁白你能把x3y-xy因式分解吗? 5、试总结因式分解的步骤是什

16、么? 师巡回指导,生自主探究后沟通合作。 生沟通热忱很高,但把全部问题分析完已用了30分钟。 生展示自学成果。 生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x) 生2:-x2+y2=-(x2-y2)=-(x+y)(x-y) 师:这两种方法都可以,但其次种方法提出负号后,肯定要留意括号里的各项要变号。 生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x) 生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必需化为两个数或整式的平方差的形式。 生5:a4-b4可分解为(a2+b2)(a2-b2) 生6:不对,a2-b2还能接着分解为a+b)(a-b)

17、 师:大家争辩的很好,运用平方差公式分解因式,必需化为两个数或两个整式的平方的差的形式,另因式分解必需分解到不能再分解为止。 反思:这节课我备课比较仔细,自学提示的设计也动了一番脑筋,为让学生顺当得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更简单总结因式分解的步骤,我又设计了问题4,自认为,本节课肯定会上的特别胜利,学生的沟通、合作,自学展示肯定会很精彩,结果却出乎我的意料,本节课没有按安排完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题: (1)我在备课时,过高估计了学生的实力,问题2中的、多数学生刚预习后不能娴熟解答,导致

18、在小组沟通时,多数学生都在沟通这几题该怎样分解,耽搁了珍贵的时间,也分散了学生的留意力,导致难点、重点不突出,若能把问题2改为: 下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。 (2)老师备课时,要考虑学生的学问层次,实力水平,真正把学生放在第一位,要考虑学生的接受实力,支配习题要按部就班,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简洁的,像、可到练习时再出现,发觉问题后再强调、归纳,效果也可能会更好。 我刚好调整了自学提示的内容,在另一个班也上了这节课。果真,学生的探讨有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛特别活跃,练习量大,

19、精确率高,但随之我又发觉我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又起先惊慌地练习下课后,无意间发觉竟还有好几个同学课后题没做。缘由是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,缘由是上课慌着展示自己,没顾上改。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注意过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要留意融会贯穿,会举一反三。 的确,“学海无涯,教海无边”。我们备课再仔细,预设再周全,面对不同的学生,不同

20、的学情,仍旧会产生新的问题,“没有,只有更好!”我会始终探究、努力,不断完善教学设计,更新教化观念,直到恒久 2021年初二上册数学公开课教案4 一、内容和内容解析 1.内容 三角形高线、中线及角平分线的概念、几何语言表达及它们的画法. 2.内容解析 本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;须要学生动手的频率也较高,要驾驭随意三角形的高、中线、角平分线的画法,培育学生动手操作及解决问题的实力;激励学生主动参加,体验几何学问在现实生活中的真实性,激发学生酷爱生活、勇于探究的思想感情. 理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深化.学

21、习了这一课,对于学生增长几何学问,运用几何学问解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的持续以及三角形全等、相像等后继学问一个打算. 本节的重点是了解三角形的高、中线及角平分线概念的同时还要驾驭它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系. 二、目标和目标解析 1.教学目标 (1)理解三角形的高、中线与角平分线等概念. (2)会用工具画三角形的高、中线与角平分线. 2. 教学目标解析 (1)经验画图实践过程,理解三角形的高、中线与角平分线等概念. (2)能够娴熟用几何语言表达三角形的高、中线与角平分线的性质. (3)驾驭三角形的高、中线与角平

22、分线的画法. (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点. 三、教学问题诊断分析 三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上. 三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点. 三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个 端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有肯定的联系又有本质的区分. 四、教学过程设计 1.抛砖引玉,提出问题 先演示画三

23、角形的一条高,再给出问题: (1)任画一个三角形,你能画出它的三条高吗? (2)同一个三角形的三条高线有什么位置关系? (3)不同类型的三角形的三条高线的交点位置有什么差别? 师生活动:先让学生画图实践,老师下位随机点拔,再让会画和不会画的学生相互沟通提点,然后带着问题探讨,最终各小组派代表发言,师生共同归纳概念和画法. 这一环节是一个重要的实践活动,须要学生动手实践,动口沟通,动脑思索,加深理解高线的概念和驾驭画高线的作图实力. 2.从实践上升到理论,形成概念 师生活动: 定义:从三角形的一个顶点动身,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高. 三角形的高有三

24、条,特殊强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心. 归纳:锐角三角形有 条高,它们相交于一点,交点在三角形 ; 直角三角形有 条高 ,它们相交于一点,交点在三角形 ; 钝角三 角形有 条高,它们所在直线相交于一点,交点在三角形 . 留意:三角形的高是线段. (几何语言) AD是ABC上的高, ADBC (ADB=ADC=90). 逆向:ADBC垂足是D, AD是ABC的边 BC 上的高. 几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成学问结构. 让学生体会由实践到理论的过程,培

25、育学生的归纳总结实力. 补充说明:要养成习惯,画好高线后,顺手标明垂直的记号和垂足的字母. 师生活动:结合详细图形,老师引导学生养成良好的作图习惯. 进一步加深学生对几何符号和几何语言的熟识. 3.类比学习,驾驭几何探究的基本方法 用相同的探究方法引导学生学习三角形的中线和角平分线. 师生活动:与高线的探究类似. 2021年初二上册数学公开课教案5 教学目标 1.学问与技能 会应用平方差公式进行因式分解,发展学生推理实力. 2.过程与方法 经验探究利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学学问的完整性. 3.情感、看法与价值观 培育学生良好的互动沟通的习惯,体会数学在实际问

26、题中的应用价值. 重、难点与关键 1.重点:利用平方差公式分解因式. 2.难点:领悟因式分解的解题步骤和分解因式的彻底性. 3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要留意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 教学方法 采纳“问题解决”的教学方法,让学生在问题的牵引下,推动自己的思维. 教学过程 一、视察探讨,体验新知 请同学们计算下列各式. (1)(a+5)(a-5);(2)(4m+3n)(4m-3n). 动笔计算出上面的两道题,并踊跃上台板演. (1)(a+5)(a-5)=a2-52=a2-25; (2)(4m+3n)(4m-3n)=(4m

27、)2-(3n)2=16m2-9n2. 引导学生完成下面的两道题目,并运用数学“互逆”的思想,找寻因式分解的规律. 1.分解因式:a2-25;2.分解因式16m2-9n. 从逆向思维入手,很快得到下面答案: (1)a2-25=a2-52=(a+5)(a-5). (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n). 引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解. 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 二、范例学习,应用所学 把

28、下列各式分解因式:(投影显示或板书) (1)x2-9y2;(2)16x4-y4; (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2; (5)m2(16x-y)+n2(y-16x). 在视察中发觉15题均满意平方差公式的特征,可以运用平方差公式因式分解. 启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演. 分四人小组,合作探究. 解:(1)x2-9y2=(x+3y)(x-3y); (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y); (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by); (4)(x+2y)2-(x-3y)2=(x+2y)+(x-3y)(x+2y)-(x-3y)=5y(2x-y); (5)m2(16x-y)+n2(y-16x) =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁