初中八年级数学优质教案范文.docx

上传人:ylj18****41534 文档编号:21047518 上传时间:2022-06-18 格式:DOCX 页数:16 大小:18.92KB
返回 下载 相关 举报
初中八年级数学优质教案范文.docx_第1页
第1页 / 共16页
初中八年级数学优质教案范文.docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《初中八年级数学优质教案范文.docx》由会员分享,可在线阅读,更多相关《初中八年级数学优质教案范文.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中八年级数学优质教案初中八年级数学优质教案1 教学目标 1.学问与技能 了解因式分解的意义,以及它与整式乘法的关系. 2.过程与方法 经验从分解因数到分解因式的类比过程,驾驭因式分解的概念,感受因式分解在解决问题中的作用. 3.情感、看法与价值观 在探究因式分解的方法的活动中,培育学生有条理的思索、表达与沟通的实力,培育主动的进取意识,体会数学学问的内在含义与价值. 重、难点与关键 1.重点:了解因式分解的意义,感受其作用. 2.难点:整式乘法与因式分解之间的关系. 3.关键:通过分解因数引入到分解因式,并进行类比,加深理解. 教学方法 采纳“激趣导学”的教学方法. 教学过程 一、创设情境,

2、激趣导入 请同学们探究下面的2个问题: 问题1:720能被哪些数整除?谈谈你的想法. 问题2:当a=102,b=98时,求a2-b2的值. 二、丰富联想,展示思维 探究:你会做下面的填空吗? 1.ma+mb+mc=()(); 2.x2-4=()(); 3.x2-2xy+y2=()2. 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式. 三、小组活动,共同探究 (1)下列各式从左到右的变形是否为因式分解: (x+1)(x-1)=x2-1; a2-1+b2=(a+1)(a-1)+b2; 7x-7=7(x-1). (2)在下列括号里,填上适当的项,使等式成立. 9x2(_

3、)+y2=(3x+y)(_); x2-4xy+(_)=(x-_)2. 四、随堂练习,巩固深化 课本练习. 计算:993-99能被100整除吗? 五、课堂总结,发展潜能 由学生自己进行小结,老师提出如下纲目: 1.什么叫因式分解? 2.因式分解与整式运算有何区分? 六、布置作业,专题突破 选用补充作业. 板书设计 初中八年级数学优质教案2 一、教学目标: 1、理解极差的定义,知道极差是用来反映数据波动范围的一个量 2、会求一组数据的极差 二、重点、难点和难点的突破方法 1、重点:会求一组数据的极差 2、难点:本节课内容较简单接受,不存在难点。 三、例习题的意图分析 教材P151引例的意图 (1)

4、、主要目的是用来引入极差概念的 (2)、可以说明极差在统计学家族的角色反映数据波动范围的量 (3)、交待了求一组数据极差的方法。 四、课堂引入: 引入问题可以仍旧采纳教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。 五、例习题分析 本节课在教材中没有相应的例题,教材P152习题分析 问题1 可由极差计算公式干脆得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计学问首先应回忆复习已学学问。问题3答案并不,合理即可。 六、随堂练习: 1、一组数据:473、865、368、7

5、74、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 . 2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= . 3、下列几个常见统计量中能够反映一组数据波动范围的是( ) A.平均数 B.中位数 C.众数 D.极差 4、一组数据X 、X X 的极差是8,则另一组数据2X +1、2X +1,2X +1的极差是( ) A. 8 B.16 C.9 D.17 答案:1. 497、3850 2. 4 3. D 4.B 七、课后练习: 1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( ) A. 0.4 B.16 C.0.2 D.

6、无法确定 在一次数学考试中,第一小组14名学生的成果与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成果是( ) A. 87 B. 83 C. 85 D无法确定 3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。 4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。 5、某活动小组为使全小组成员的成果都要达到优秀,准备实施“以优帮困”安排,为此统计了上次测试各成员的成果(单位:分) 90、95、87、92、63、54、82、76、55、100、45、80 计算这

7、组数据的极差,这个极差说明什么问题? 将数据适当分组,做出频率分布表和频数分布直方图。 答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成果优劣差距较大。(2)略 初中八年级数学优质教案3 一、教学目标 1、相识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映肯定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:相识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息

8、做出决策。 3、难点的突破方法: 首先应交待清晰中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关切的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注意双基,肯定要使学生能够很好的驾驭中位数和众数的求法,求中位数的步骤:将数据由小到大(或由大到小)排列,数清数据个数是奇数还是偶数,假如数据个数为奇数则取中间的数,假如数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数

9、的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应依据详细状况,课堂上老师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的探讨对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的探讨对象,我们可以考察总体中的一个样本,然后由样本的探讨结论去估计总体的状况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2明显反映学习中位数的意义:它可以估计一

10、个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学学问与实际生活是紧密联系的,所以应激励学生学好这部分学问。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要探讨的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延长中位数的定义过程中拉开序幕的,本人很同意这种处理方式,老师可以一句话引入新课:前面已经和同学们探讨过了平均数的

11、这个数据代表。它在分析数据过程中担当了重要的角色,今日我们来共同探讨和相识数据代表中的新成员中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有根据从小到大(或从大到小)的依次排列。因此,首先应将数据重新排列,通过视察会发觉共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中其次行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统

12、计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?假如不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹 1.2匹 1.5匹 2匹 3月 12台 20台 8台 4台 4月 16台 30台 14台 8台 依据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进

13、货单位将如何确定? 答案:1. (1)210件、210件 (2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2. (1)1.2匹 (2)通过视察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1. 数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是 ,众数是 2. 一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 . 3. 数据92、96、98、100、X的众数是96,则其

14、中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4. 假如在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5. 随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度() -8 -1 7 15 21 24 30 天数 3 5 5 7 6 2 2 请你依据上述数据回答问题: (1).该组数据的中位数是什么? (2).若当气温在1825为市民“满足温度”,则我市一年中达到市民“满足温度”的大约有

15、多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 初中八年级数学优质教案4 一、学习目标: 1.经验探究平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简洁的运算. 二、重点难点 重点: 平方差公式的推导和应用 难点: 理解平方差公式的结构特征,敏捷应用平方差公式. 三、合作学习 你能用简便方法计算下列各题吗? (1)20011999 (2)9981002 导入新课: 计算下列多项式的积. (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 结论:两个数的和与这两个数的差的积

16、,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) 例2:计算: (1)10298 (2)(y+2)(y-2)-(y-1)(y+5) 随堂练习 计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2) 五、小结:(a+b)(a-b)=a2-b2 初中八年级数学优质教案5 提公因

17、式法 教学目标 1.学问与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 2.过程与方法 使学生经验探究多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 3.情感、看法与价值观 培育学生分析、类比以及化归的思想,增进学生的合作沟通意识,主动主动地积累确定公因式的初步阅历,体会其应用价值. 重、难点与关键 1.重点:驾驭用提公因式法把多项式分解因式. 2.难点:正确地确定多项式的公因式. 3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 教学方法 采纳“启发式”教学方

18、法. 教学过程 一、回顾沟通,导入新知 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 问题: 1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概

19、念:假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法. 二、小组合作,探究方法 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? 提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 三、范例学习,应用所学 把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x

20、+3y-1) 分解因式,3a2(x-y)3-4b2(y-x)2 视察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-(y-x)23a2(y-x)+4b2(y-x)2 =-(y-x)23a2(y-x)+4b2 =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)23a2(x-y)-4b2(x-y)2 =(x-y)23a2(x-y)-4b2 =

21、(x-y)2(3a2x-3a2y-4b2) 用简便的方法计算:0.8412+120.6-0.4412. 引导学生视察并分析怎样计算更为简便. 解:0.8412+120.6-0.4412 =12(0.84+0.6-0.44) =121=12. 在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 课本P167练习第1、2、3题. 利用提公因式法计算: 0.5828.69+1.2368.69+2.4788.69+5.7048.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准公因式.在找公因式时应留意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应留意分解彻底,也就是说,分解到不能再分解为止. 六、布置作业,专题突破 课本P170习题15.4第1、4(1)、6题. 板书设计

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁