最全面人教A版新课标高中数学必修一教案《等式性质与不等式性质》(精华版).pdf

上传人:春哥&#****71; 文档编号:20730683 上传时间:2022-06-17 格式:PDF 页数:6 大小:151.98KB
返回 下载 相关 举报
最全面人教A版新课标高中数学必修一教案《等式性质与不等式性质》(精华版).pdf_第1页
第1页 / 共6页
最全面人教A版新课标高中数学必修一教案《等式性质与不等式性质》(精华版).pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《最全面人教A版新课标高中数学必修一教案《等式性质与不等式性质》(精华版).pdf》由会员分享,可在线阅读,更多相关《最全面人教A版新课标高中数学必修一教案《等式性质与不等式性质》(精华版).pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 / 62.1 等式性质与不等式性质1、知识与技能(1)能用不等式( 组) 表示实际问题的不等关系;(2)初步学会作差法比较两实数的大小;(3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】能用不等式 ( 组) 表示实际问题的不等关系,会

2、作差法比较两实数的大小,通过类比法, 掌握不等式的基本性质. 【教学难点】运用不等式性质解决有关问题. (一)新课导入用不等式 ( 组 ) 表示不等关系 教学目标 教学重难点 教学过程学习资料精品学习资料第 1 页,共 6 页2 / 6中国 神舟七号”宇宙飞船飞天取得了最圆满的成功. 我们知道 , 它的飞行速度 (v) 不小于第一宇宙速度 ( 记作2v), 且小于第二宇宙速度( 记1v).12vvv(二)新课讲授问题 1:你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40km/ h;(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于 2.5%,蛋白质的含量p应不少于

3、 2.3%;(3)三角形两边之和大于第三边、两边之差小于第三边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于( 1),设在该路段行驶的汽车的速度为vkm/ h,“限速 40km/ h”就是 v的大小不能超过 40,于是 0v40.对于 (2) 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于 2.5%,蛋白质的含量 p 应不少于 2.3%. 2.5%2.3%fp对于( 3),设 ABC的三条边为 a,b,c,则 a+bc, a-bc. 对于(4),如图 2.1-1,设C是线段 AB外的任意一点, CD垂直于 AB,垂足为 D,E是线段 AB上不同于 D的任意一点,则C

4、DCE. 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图2.1-1接着,就可以用不等式研究相应的问题了问题 2: 某种杂志原以每本2.5元的价格销售, 可以售出 8万本 .据市场调查, 杂志的单价每提高0.1元,销售量就可能减少2000本 .如何定价才能使提价后的销售总收入不低于20万元?学习资料精品学习资料第 2 页,共 6 页3 / 6解: 提价后销售的总收入为8x2.50.10.2x 万元,那么不等关系“销售的总收入仍不低于 20 万元”可以表示为不等式8x2.50.10.2x20. 求出不等式的解集,就能知道满足条件的杂志的定价范围. 如何解不等式呢?与解方程要用等式的性质一样,

5、解不等式要用不等式的性质.为此,我们需要先研究不等式的性质. 实际上,在初中我们已经通过具体实例归纳出了一些不等式的性质.那么这些性质为什么是正确的?还有其他不等式的性质吗?回答这些问题要用到关于两个实数大小关系的基本事实 . 由于数轴上的点与实数一一对应,所以可以利用数轴上点的位置关系来规定实数的大小关系:如图 2.1-2,设 a, b是两个实数,它们在数轴上所对应的点分别是A,B.那么,当点 A在点 B的左边时, ab;当点 A在点 B的右边时, ab. 探究一:比较两个数( 式) 的大小的方法: 我们用数学符号“”,“”,“”,“”,“”连接两个数或代数式,以表示它们之间的不等关系. 含

6、有这些不等号的式子叫做不等式. 判断两个数 ( 式) 的大小的依据是:( 作差法 ) ab0? ab;ab0? ab; ab0? ab. 这既是比较大小( 或证明大小 ) 的基本方法 , 又是推导不等式的性质的基础. 作差比较法其一般步骤是: 作差变形判断符号确定大小. (三)例题探究例1比较( x+2)( x+3)和( x+1)( x+4)的大小 . 分析:通过考察这两个多项式的差与0的大小关系,可以得出它们的大小关系。解:因为(x+2)( x+3)-(x+1)( x+4)=(x2+5x+6)-( x2+5x+4)=2 0,所以(x+2)( x+3)( x+1)( x+4). 学习资料精品学

7、习资料第 3 页,共 6 页4 / 6跟踪训练1 已知 x1,试比较x31 与 2x22x 的大小 . 解:(x31) (2 x22x) x3 2x22x1 ( x3x2) ( x22x1) x2( x 1)( x1)2( x1)( x2x1) ( x1)( x12)234 ,(x12)2340,x10,(x1)( x12)234 0,x312x22x. 探究二: 将图 2.1-3中的 “ 风车 ” 抽象成图2.1-4. 在正方形ABCD中有 4 个全等的直角三角形。 设直角三角形的两条直角边的长为a,b(a b),那么正方形的边长为22ab. 这样, 4 个直角三角形的面积和为2ab,正方形

8、的面积为a2+b2. 由于正方形ABCD 的面积大于 4 个直角三角形的面积和,我们就得到了一个不等式a2+b22ab.当直角三角形变为等腰直角三角形,即a=b时,正方形 EFGH 缩为一个点,这时有a2+b2=2ab. 于是就有 a2+b22 ab. 一般地,,a bR,有a2+b22 ab,当且仅当 a=b时,等号成立事实上,利用完全平方差公式,得a2+b2-2ab=(a-b)2. 因为,a bR,( a-b)2=0,当且仅当 a=b时,等号成立,所以a2+b2-2ab =0.因此,由两个实数大小关系的基本事实,得a2+b22 ab,当且仅当 a=b时,等号成立 . 通过等式性质可以发现,

9、等式在运算中的不变性. 类比等式的基本性质,你能猜想不等式的基本性质,并加以证明吗?探究三 : 不等式的基本性质(1) ab? ba(对称性 ) ;(2) ab,bc? ac( 传递性 );学习资料精品学习资料第 4 页,共 6 页5 / 6(3) ab? acbc( 可加性 );(4) ab,c0? acbc;ab,c0? acbc;(5) ab,cd? acbd;(6) ab0,cd0? acbd;(7) ab0,nN,n1? anbn;(8) ab0,nN,n2?nanb. 例 2已知 ab 0,c0,求证:cacb. 证明: 因为 ab0,所以 ab0,1ab0. 于是 a1abb1a

10、b,即1b1a. 由 c0,得cacb. 有关不等式的证明,最基本的依据是不等式的8 条基本性质, 在解不等式时, 对不等式进行有关变形的依据也是8 条基本性质 . 跟踪训练2 如果 ab0,cd0,证明: acbd. 证明:ab0c0?acbc0cd0b0?bcbd0? acbd. (四)课堂检测1、 完成一项装修工程,请木工共需付工资每人500 元,请瓦工共需付工资每人400 元,现有工人工资预算20 000 元,设木工x 人,瓦工y 人,则工人满足的关系式是( ) A、5x 4y200 B、5x4y 200C、5x4y200 D、5x4y 200解析: 据题意知, 500 x400y20

11、 000,即5x4y200,故选D. 2、若 ab0,c d0,则一定有 ( ) A、adbcB、adbcC、acbdD、acbd解析:c d 0,1d1c0,1d1c0,而 ab 0,adbc0,adbc,故选 B. 学习资料精品学习资料第 5 页,共 6 页6 / 63、比较大小:x2x_x2. 解析: ( x2x) ( x2) x22x 2( x1)21. 因为 ( x1)20,所以 ( x 1)210,即 x2xx2. 答案: 4、若 10ab8,则 | a| b 的取值范围是 _. 解析: 10a8,0|a| 10,又 10b 8, 10| a| b 18. 答案: ( 10,18)

12、 5、比较 ( a3)( a5) 与(a2)( a4) 的大小 . 解: (a3)( a5) ( a2)( a4) ( a22a15) ( a22a8) 70,(a3)( a5)( a2)( a4). 6、某市政府准备投资1800 万元兴办一所中学. 经调查,班级数量以20 至 30 个为宜,每个初、高中班硬件配置分别需要28 万元与 58 万元,该学校的规模( 初、高中班级数量)所满足的条件是什么?解: 设该校有初中班x 个,高中班y 个,则有20 xy30,28x58y1800.(五)课堂总结1、比较两个实数的大小,只要考察它们的差就可以了. ab0? ab;ab0? ab; ab0? ab. 2、作差法比较的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于 0,还是小于0(不确定的要分情况讨论) ;最后得结论 . 概括为“三步一结论”,这里的“定号”是目的,“变形”是关键. 3、不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备. 略. 教学反思学习资料精品学习资料第 6 页,共 6 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁