《高一数学《213-214空间中直线与平面、平面与平面之间的位置关系》.ppt》由会员分享,可在线阅读,更多相关《高一数学《213-214空间中直线与平面、平面与平面之间的位置关系》.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.1.3-2.1.4空间中直线与平面、空间中直线与平面、平面与平面之间的位置关系平面与平面之间的位置关系云阳中学高一数学组云阳中学高一数学组复习引入复习引入1. 异面直线所成的角;异面直线所成的角;2. 异面直线垂直的定义与记法;异面直线垂直的定义与记法;复习引入复习引入1. 异面直线所成的角;异面直线所成的角;2. 异面直线垂直的定义与记法;异面直线垂直的定义与记法;3. 教材教材P.48的的练习练习.空间中直线与平面有多少种位置关系?空间中直线与平面有多少种位置关系? 讲授新课讲授新课空间中直线与平面有多少种位置关系?空间中直线与平面有多少种位置关系? 讲授新课讲授新课(1)直线在平面内
2、直线在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点.空间中直线与平面有多少种位置关系?空间中直线与平面有多少种位置关系? 讲授新课讲授新课(1)直线在平面内直线在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点. 直线与平面直线与平面相交或平行相交或平行的情况统称的情况统称为为直线在平面外直线在平面外. aa aa Aa a讲授新课讲授新课空间中直线与平
3、面有多少种位置关系?空间中直线与平面有多少种位置关系? A例例. 下列命题中正确的个数是下列命题中正确的个数是若直线若直线l上有无数个点不在平面上有无数个点不在平面 内,内, 则则l .若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都平行的任意一条直线都平行.如果两条平行直线中的一条与一个平如果两条平行直线中的一条与一个平 面平行面平行,那么另一条也与这个平面平行那么另一条也与这个平面平行. 若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都没有公共点的任意一条直线都没有公共点.A. 0 B. 1 C. 2 D. 3( )例例.
4、 下列命题中正确的个数是下列命题中正确的个数是若直线若直线l上有无数个点不在平面上有无数个点不在平面 内,内, 则则l .若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都平行的任意一条直线都平行.如果两条平行直线中的一条与一个平如果两条平行直线中的一条与一个平 面平行面平行,那么另一条也与这个平面平行那么另一条也与这个平面平行. 若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都没有公共点的任意一条直线都没有公共点.A. 0 B. 1 C. 2 D. 3B( )例例. 下列命题中正确的个数是下列命题中正确的个数是若直线若直线l上
5、有无数个点不在平面上有无数个点不在平面 内,内, 则则l .若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都平行的任意一条直线都平行.如果两条平行直线中的一条与一个平如果两条平行直线中的一条与一个平 面平行面平行,那么另一条也与这个平面平行那么另一条也与这个平面平行. 若直线若直线l与平面与平面 平行,则平行,则l与平面与平面 内内 的任意一条直线都没有公共点的任意一条直线都没有公共点.A. 0 B. 1 C. 2 D. 3练习练习. 教材教材P.50 练习练习.B( )两个平面之间有两种位置关系:两个平面之间有两种位置关系:(1)两个平面平行两个平面平行没有
6、公共点;没有公共点;(2)两个平面相交两个平面相交有且只有一条公共有且只有一条公共 直线直线.两个平面之间有两种位置关系:两个平面之间有两种位置关系:(1)两个平面平行两个平面平行没有公共点;没有公共点;(2)两个平面相交两个平面相交有且只有一条公共有且只有一条公共 直线直线.两个平面之间有两种位置关系:两个平面之间有两种位置关系: / ll 已知平面已知平面 , ,直线直线a, b,且,且 ,a , b ,则,则直线直线a与与直线直线b具有怎样具有怎样的位置关系?的位置关系?探究探究 已知平面已知平面 , ,直线直线a, b,且,且 ,a , b ,则,则直线直线a与与直线直线b具有怎样具有
7、怎样的位置关系?的位置关系?1. 教材教材P.51习题习题2.1A组组第第3、4题题;2. 教材教材P.53习题习题2.1B组组第第2题题.探究探究练习练习课堂小结课堂小结一、直线与平面有三种位置关系:一、直线与平面有三种位置关系:课堂小结课堂小结一、直线与平面有三种位置关系:一、直线与平面有三种位置关系:(1)直线在平面内直线在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点.课堂小结课堂小结一、直线与平面有三种位置关系:一、直线与平面有三种位置关系:(1)直线在平面内直线
8、在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点.二、两个平面之间有两种位置关系:二、两个平面之间有两种位置关系:课堂小结课堂小结一、直线与平面有三种位置关系:一、直线与平面有三种位置关系:(1)直线在平面内直线在平面内有无数个公共点;有无数个公共点;(2)直线与平面相交直线与平面相交有且只有一个有且只有一个 公共点;公共点;(3)直线与平面平行直线与平面平行没有公共点没有公共点.二、两个平面之间有两种位置关系:二、两个平面之间有两种位置关系:(1)两个平面平行两个平面平行没有公共点;没有公共点;(2)两个平面相交两个平面相交有且只有一条公共有且只有一条公共 直线直线.1. 复习复习2.1节内容,理清脉络;节内容,理清脉络; 2. 习案习案第十课时第十课时.课后作业课后作业