11.3多边形及其内角和(第2课时).ppt

上传人:阿宝 文档编号:2062758 上传时间:2019-11-22 格式:PPT 页数:37 大小:2.90MB
返回 下载 相关 举报
11.3多边形及其内角和(第2课时).ppt_第1页
第1页 / 共37页
11.3多边形及其内角和(第2课时).ppt_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《11.3多边形及其内角和(第2课时).ppt》由会员分享,可在线阅读,更多相关《11.3多边形及其内角和(第2课时).ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第十一章 三角形,11.3多边形及其内角和第2课时,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,1.能通过不同方法探索多边形的内角和与外角和公式.(重点)2.学会运用多边形的内角和与外角和公式解决问题.(难点),学习目标,法国的建筑事务所atelierd将协调坚固的蜂窝与人类天马行空的想象力结合,创造了这个“abeilles bee pavilion”.,导入新课,情景引入,思考:你知道正六边形的内角和是多少吗?,问题2 你知道长方形和正方形的内角和是多少 度?,问题1 三角形内角和是多少度?,三角形内角和 是180.,都是360.,问题3 猜想

2、任意四边形的内角和是多少度?,讲授新课,多边形的内角和,猜想:四边形ABCD的内角和是360.,问题4 你能用以前学过的知识说明一下你的结论吗?,猜想与证明,方法1:如图,连接AC,所以四边形被分为两个三角形,所以四边形ABCD内角和为1802=360.,E,方法2:如图,在CD边上任取一点E,连接AE,DE,所以该四边形被分成三个三角形,所以四边形ABCD的内角和为1803-(AEB+AED+CED)=1803-180=360.,方法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形:ABE,ADE,CDE,CBE.所以四边形ABCD内角和为:1804

3、-(AEB+AED+CED+CEB)=1804-360=360.,E,P,方法4:如图,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.,所以四边形ABCD内角和为180 3 180 = 360.,这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.,结论: 四边形的内角和为360.,例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.,解:,如图,四边形ABCD中,A+ C =180.,A+B+C+D=(42) 180 = 360 ,,因为,BD= 360(AC) = 360 180 =180.,所

4、以,如果一个四边形的一组对角互补,那么另一组对角互补.,典例精析,【变式题】如图,在四边形ABCD中,A与C互补,BE平分ABC,DF平分ADC,若BEDF,求证:DCF为直角三角形,证明:在四边形ABCD中,A与C互补,ABC+ADC=180,BE平分ABC,DF平分ADC,CDF+EBF=90,BEDF,EBF=CFD,CDF+CFD=90,故DCF为直角三角形,运用了整体思想,问题5 你能仿照求四边形内角和的方法,选一种方法求五边形和六边形内角和吗?,内角和为180 3 = 540.,内角和为180 4 = 720.,0,n -3,1,2,3,1,2,3,4,n -2,( n -2 )1

5、80,1180=180,2180=360,3180=540,4180=720,由特殊到一般,分割,多边形,三角形,分割点与多边形的位置关系,顶点,边上,内部,外部,转化思想,总结归纳,多边形的内角和公式,n边形内角和等于(n-2)180 .,例2 一个多边形的内角和比四边形的内角和多720,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?,解:设这个多边形边数为n,则 (n-2)180=360+720, 解得n=8, 这个多边形的每个内角都相等, (8-2)180=1080, 它每一个内角的度数为10808=135,典例精析,例3 已知n边形的内角和=(n-2)180(1)甲同学说

6、,能取360;而乙同学说,也能取630甲、乙的说法对吗?若对,求出边数n若不对,说明理由;,解:360180=2, 630180=3.90, 甲的说法对,乙的说法不对, 360180+2=4 故甲同学说的边数n是4;,(2)若n边形变为(n+x)边形,发现内角和增加了360,用列方程的方法确定x,解:依题意有(n+x-2)180-(n-2)180=360,解得x=2故x的值是2,【变式题】一个同学在进行多边形的内角和计算时,求得内角和为1125,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?,解:设此多边形的内角和为x,则有1125x1125180

7、,即180645x180745,因为x为多边形的内角和,所以它是180的倍数,所以x18071260.所以729,12601125135.因此,漏加的这个内角是135,这个多边形是九边形,思路点拨:多边形的内角的度数在0180之间.,例4 如图,在五边形ABCDE中,C=100,D=75,E=135,AP平分EAB,BP平分ABC,求P的度数,解析:根据五边形的内角和等于540,由C,D,E的度数可求EAB+ABC的度数,再根据角平分线的定义可得PAB与PBA的角度和,进一步求得P的度数,可运用了整体思想,解:EAB+ABC+C+D+E=540,C=100,D=75,E=135,EAB+ABC

8、=540-C-D-E=230.AP平分EAB,PAB EAB,同理可得ABP ABC,P+PAB+PBA=180,P=180-PAB-PBA=180 (EAB+ABC)=180 230=65,用形状、大小完全相同的任意四边形可拼成一块无空隙的地板,你知道这是为什么吗?,你知道吗?,如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和,问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?,互补,5180=900,多边形的外角和,五边形外角和,=360 ,=5个平角,五边形内角和,=5180,(52) 180,结论:五边形的外角和等于

9、360.,问题3:这五个平角和与五边形的内角和、外角和有什么关系?,在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和,n边形外角和,n边形的外角和等于360.,(n2) 180,=360 ,=n个平角-n边形内角和,= n180 ,思考:n边形的外角和又是多少呢?,与边数无关,问题4:回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?,每个内角的度数是,每个外角的度数是,练一练:(1)若一个正多边形的内角是120 ,那么这是正_边形.(2)已知多边形的每个外角都是45,则这个多边形是 _边形.,六,正八,例4 已知一个多边形,它的内角和等于外角和的 2

10、倍,求这个多边形的边数.,解: 设多边形的边数为n. 它的内角和等于 (n2)180, 多边形外角和等于360, (n2)180=2 360. 解得 n=6. 这个多边形的边数为6.,例5 已知一个多边形的每个内角与外角的比都 是7:2,求这个多边形的边数.,解法一:设这个多边形的内角为7x ,外角为2x,根据题意得,7x+2x=180,,解得x=20.,即每个内角是140 ,每个外角是40 .,360 40 =9.,答:这个多边形是九边形.,还有其他解法吗?,解法二:设这个多边形的边数为n ,根据题意得,解得n=9.,答:这个多边形是九边形.,【变式题】一个正多边形的一个外角比一个内角大60

11、,求这个多边形的每个内角的度数及边数,解:设该正多边形的内角是x,外角是y,则得到一个方程组 解得而任何多边形的外角和是360,则该正多边形的边数为360120=3,故这个多边形的每个内角的度数是60,边数是三条,例6 如图,在正五边形ABCDE中,连接BE,求BED的度数,解:由题意得AB=AE,所以AEB= (180-A)=36,所以BED=AED-AEB=108-36=72.,当堂练习,1.判断(1)当多边形边数增加时,它的内角和也随着增加.( )(2)当多边形边数增加时,它的外角和也随着增加.( )(3)三角形的外角和与八边形的外角和相等 ( ),2.一个正多边形的内角和为720,则这

12、个正多边形的 每一个内角等于_,120,3.如图所示,小华从点A出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,照这样走下去,他第一次回到出发地点A时,走的路程一共是_米,150,4.一个多边形的内角和不可能是( )A.1800 B.540 C.720 D.810 ,D,5.一个多边形从一个顶点可引对角线3条,这个多边形 内角和等于( )A.360 B.540 C.720 D.900 ,B,6. 一个多边形的内角和为1800,截去一个角后,求得到的多边形的内角和.,解:180018010,原多边形边数为10212.一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,新多边形的边数可能是11,12,13,新多边形的内角和可能是1620,1800,1980.,能力提升:如图,求1234567的度数.,解:如图,3489,12345671289567五边形的内角和540.,8,9,课堂小结,多边形的内角和,内角和计算公式,(n-2) 180 (n 3的整数),外角和,多边形的外角和等于360特别注意:与边数无关.,正多边形,内角= ,外角=,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁