《人教新课标版初中九上22.3实际问题与一元二次方程(3)ppt课件.ppt》由会员分享,可在线阅读,更多相关《人教新课标版初中九上22.3实际问题与一元二次方程(3)ppt课件.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复习:列方程解应用题有哪些步骤 对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题。 上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。,实际问题与一元二次方程(三),面积、体积问题,一、复习引入,1直角三角形的面积公式是什么? 一般三角形的面积公式是什么呢? 2正方形的面积公式是什么呢? 长方形的面积公式又是什么? 3梯形的面积公式是什么? 4菱形的面积公式是什么? 5平行四边形的面积公式是什么? 6圆的面积公式是什么?,要设计一本书的封面,封面长27,宽21,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是
2、封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?,分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7,解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得,解得,故上下边衬的宽度为:左右边衬的宽度为:,探究3,要设计一本书的封面,封面长27,宽21,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?,分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7,解法二:设上下边衬的宽为9xcm,
3、左右边衬宽为7xcm依题意得,解方程得,(以下同学们自己完成),方程的哪个根合乎实际意义?为什么?,例1. (2004年,镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.,解: (1),方案1:长为 米,宽为7米;,方案2:长为16米,宽为4米;,方案3:长=宽=8米
4、;,注:本题方案有无数种,(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.,由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.,x(16-x)=63+2,,x2-16x+65=0,,此方程无解.,在周长不变的情况下,长方形花圃的面积不能增加2平方米,1、用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.,练习:,解:设这个矩形的长为xcm,则宽为 cm,即,x2-10x+30=0,这里a=1,b=10,c=30,此方程无解.,用20cm长的铁丝不能折成面积为30cm2的矩形.,例2:某校为了美化校园,准
5、备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.,补充例题与练习,解:(1)如图,设道路的宽为x米,则,化简得,,其中的 x=25超出了原矩形的宽,应舍去.,图(1)中道路的宽为1米.,则横向的路面面积为 ,,分析:此题的相等关系是矩形面积减去道路面积等于540米2。,解法一、 如图,设道路的宽为x米,,32x 米2,纵向的路面面积为 。,20x 米2,注意:这两个面积的重叠部分是 x2 米2,所列的方程是不是,?
6、,所以正确的方程是:,化简得,,其中的 x=50超出了原矩形的长和宽,应舍去.取x=2时,道路总面积为:,=100 (米2),答:所求道路的宽为2米。,解法二: 我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),横向路面 ,,如图,设路宽为x米,,32x米2,纵向路面面积为 。,20x米2,草坪矩形的长(横向)为 ,,草坪矩形的宽(纵向) 。,相等关系是:草坪长草坪宽=540米2,(20-x)米,(32-x)米,即,化简得:,再往下的计算、格式书写与解法1相同。,练习:,1.如图是宽为20米,
7、长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?,解:设道路宽为x米,,则,化简得,,其中的 x=35超出了原矩形的宽,应舍去.,答:道路的宽为1米.,练习:,2.如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.,解:设小路宽为x米,,则,化简得,,答:小路的宽为3米.,补充例题与练习,例3. (2003年,舟山)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方
8、形花圃。设花圃的宽AB为x米,面积为S米2,(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?,【解析】(1)设宽AB为x米,则BC为(24-3x)米,这时面积S=x(24-3x)=-3x2+24x(2)由条件-3x2+24x=45化为:x2-8x+15=0解得x1=5,x2=3024-3x10得14/3x8x2不合题意,AB=5,即花圃的宽AB为5米,练习:,1.如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎么设计?,解:设苗圃的一边长为xm,则,化简得,,答:应围成一个边长为9米的正方形.,例4某林场计划修
9、一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m (1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?,补充例题与练习,分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模,解:(1)设渠深为xm,则渠底为(x+0.4)m,上口宽为(x+2)m,依题意,得:,整理,得:5x2+6x-8=0,解得:x1=0.8m,x2=-2(不合题意,舍去),上口宽为2.8m,渠底为1.2m,答:渠道的上口宽与渠底深各是2.8m和1.2m;需要2
10、5天才能挖完渠道,1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为【 】A400cm2 B500cm2 C600cm2 D4000cm22. 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是【 】Ax2+130x-1400=0 Bx2+65x-350=0Cx2-130x-1400=0 Dx2-65x-350=03.如图,面积为30m2的正方形的四个角是面积为2m2的小正方形,用计算器求得a的长为(保留3个有效数字)【 】A2.70m B2.66m C2.65m D2.60m,A,B,C,4如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_,练习:,练习:,5、围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2.求这个公园的长与宽.,这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求,列一元二次方程解应用题的步骤与 列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答,小结,