12应用举例(共4课时).ppt

上传人:仙*** 文档编号:20258198 上传时间:2022-06-13 格式:PPT 页数:50 大小:2.80MB
返回 下载 相关 举报
12应用举例(共4课时).ppt_第1页
第1页 / 共50页
12应用举例(共4课时).ppt_第2页
第2页 / 共50页
点击查看更多>>
资源描述

《12应用举例(共4课时).ppt》由会员分享,可在线阅读,更多相关《12应用举例(共4课时).ppt(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、主备人:罗瑜唐强主备人:罗瑜唐强 审核人:牟必继审核人:牟必继世上没有什么天才,世上没有什么天才,天才是勤奋的结果。天才是勤奋的结果。(共4课时)解斜三角形公式、定理正弦定理:正弦定理:余弦定理:余弦定理:三角形边与角的关系:三角形边与角的关系:RCcBbAa2sinsinsin Abccbacos2222 Baccabcos2222 Cabbaccos2222 1801CBA、2、 大角对大边,小角对小边大角对大边,小角对小边 。,bcacbA2cos222,cabacB2cos222。abcbaC2cos2222.余弦定理的作用余弦定理的作用(1)已知三边,求三个角;)已知三边,求三个角;

2、(2)已知两边和它们的夹角,求第三边和其它两角;)已知两边和它们的夹角,求第三边和其它两角; (3)判断三角形的形状。)判断三角形的形状。中,在ABC推论推论:为直角;,则若Ccba222为锐角;,则若Ccba222为钝角;,则若Ccba222三角形的面积公式三角形的面积公式BacAbcCabSsinsinsin212121斜三角形的解法斜三角形的解法已知条件已知条件定理选用定理选用一般解法一般解法用正弦定理求出另一对角用正弦定理求出另一对角,再由再由A+B+C=180,得出第三角,得出第三角,然然后用正弦定理求出第三边。后用正弦定理求出第三边。正弦定理正弦定理余弦定理余弦定理正弦定理正弦定理

3、余弦定理余弦定理由由A+B+C=180,求出另一角,再求出另一角,再用正弦定理求出两边。用正弦定理求出两边。用余弦定理求第三边,再用余弦用余弦定理求第三边,再用余弦定理求出一角,再由定理求出一角,再由A+B+C=180得出第三角。得出第三角。用余弦定理求出两角,再由用余弦定理求出两角,再由A+B+C=180得出第三角。得出第三角。一边和两角一边和两角(ASA或或AAS)两边和夹角两边和夹角(SAS)三边三边(SSS)两边和其中一两边和其中一边的对角边的对角(SSA):多应用实际测量中有许正弦定理和余弦定理在(1)测量距离.(2)测量高度.)3(测量角度解斜三角形中的有关名词、术语解斜三角形中的

4、有关名词、术语: (1)坡度角:坡度角:斜面与地平面所成的角度。斜面与地平面所成的角度。 (2)仰角和俯角:仰角和俯角:在在视线视线和和水平线水平线所成的角中,所成的角中,视线在水平线视线在水平线上方上方的角叫仰角,视线在水平线的角叫仰角,视线在水平线下下方方的角叫俯角。的角叫俯角。 (3)方位角:方位角:从正北方向从正北方向顺时针顺时针转到目标方向转到目标方向的夹角。的夹角。 (4)视角:视角:由物体两端射出的两条光线在眼球由物体两端射出的两条光线在眼球内交叉而成的角内交叉而成的角ACB51o55m75o例例1.设设A、B两点在河的两岸,要测量两点之间的距离。两点在河的两岸,要测量两点之间的

5、距离。测量者在测量者在A的同测,在所在的河岸边选定一点的同测,在所在的河岸边选定一点C,测出测出AC的距离是的距离是55cm,BAC51o, ACB75o,求,求A、B两点间的距离(精确到两点间的距离(精确到0.1m)分析:已知两角一边,可以用正弦定理解三角形分析:已知两角一边,可以用正弦定理解三角形sinsinABACCB解:根据正弦定理,得解:根据正弦定理,得答:答:A,B两点间的距离为两点间的距离为65.7米。米。sinsinsin55sinsinsin55sin7555sin7565.7( )sin(1805175 )sin54ABACACBABCACACBACBABABCABCmAB

6、CD.,),(,2两点间距离的方法设计一种测量达不可到两点都在河的对岸、如图例BABAABCDa解:如图,测量者可解:如图,测量者可以在河岸边选定两点以在河岸边选定两点C、D,设,设CD=a,BCA=,ACD=,CDB=,ADB=分析:用例分析:用例1的方法,可以计算出河的这一岸的一的方法,可以计算出河的这一岸的一点点C到对岸两点的距离,再测出到对岸两点的距离,再测出BCA的大小,的大小,借助于余弦定理可以计算出借助于余弦定理可以计算出A、B两点间的距离。两点间的距离。解:测量者可以在河岸边选定两点解:测量者可以在河岸边选定两点C、D,测得,测得CD=a,并并且在且在C、D两点分别测得两点分别

7、测得BCA=, ACD=, CDB=, BDA=.在在 ADC和和 BDC中,应用正弦定理得中,应用正弦定理得计算出计算出AC和和BC后,再在后,再在 ABC中,应用余弦定理计中,应用余弦定理计算出算出AB两点间的距离两点间的距离sin()sin()sin()sin 180()sinsinsin()sin 180()aaACaaBC222cosABACBCACBC变式训练:变式训练:若在河岸选取相距若在河岸选取相距4040米的米的C C、D D两两点,测得点,测得 BCA= BCA= , ACD= ACD= , CDB= CDB= ,BDA=BDA=60304560求求A、B两点间距离两点间距

8、离 .注:阅读教材注:阅读教材P12P12,了解,了解基线基线的概念的概念练习练习1.一艘船以一艘船以32.2n mile / hr的速度向正的速度向正北航行。在北航行。在A处看灯塔处看灯塔S在船的北偏东在船的北偏东20o的的方向,方向,30min后航行到后航行到B处,在处,在B处看灯塔处看灯塔在船的北偏东在船的北偏东65o的方向,已知距离此灯塔的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?艘船可以继续沿正北方向航行吗?11545sin2016.1sin207.787()sin45sin45,sin657.06(

9、)6.5ASBSBASABSBn mileSABhhSBn milehn mile 解:在中,由正弦定理得设点 到直线的距离为则此船可以继续沿正北方向航行答:此船可以继续沿正北方向航行变式练习:变式练习:两灯塔两灯塔A A、B B与海洋观察站与海洋观察站C C的距离都的距离都等于等于a km,a km,灯塔灯塔A A在观察站在观察站C C的北偏东的北偏东3030o o,灯塔,灯塔B B在观察站在观察站C C南偏东南偏东6060o o,则,则A A、B B之间的距离为多之间的距离为多少?少?练习练习2自动卸货汽车的车厢采用液压机构。设计时需要计算自动卸货汽车的车厢采用液压机构。设计时需要计算油泵

10、顶杆油泵顶杆BC的长度已知车厢的最大仰角是的长度已知车厢的最大仰角是60,油泵顶点,油泵顶点B与车厢支点与车厢支点A之间的距离为之间的距离为1.95m,AB与水平线之间的夹角为与水平线之间的夹角为62020,AC长为长为1.40m,计算,计算BC的长(精确到的长(精确到0.01m0.01m) (1 1)什么是最大仰角?)什么是最大仰角? 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 (2 2)例题中涉及一个怎样的三角)例题中涉及一个怎样的三角形?形? 在在ABC中已知什么,要求什么?中已知什么,要求什么?CAB练习练习2自动卸货汽车的车厢采用液压机构。设计时需要计算自动卸货

11、汽车的车厢采用液压机构。设计时需要计算油泵顶杆油泵顶杆BC的长度已知车厢的最大仰角是的长度已知车厢的最大仰角是60,油泵顶点,油泵顶点B与车厢支点与车厢支点A之间的距离为之间的距离为1.95m,AB与水平线之间的夹角为与水平线之间的夹角为62020,AC长为长为1.40m,计算,计算BC的长(精确到的长(精确到0.01m0.01m) 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 已知已知ABC中中AB1.95m,AC1.40m, 夹角夹角CAB6620,求,求BC解:由余弦定理,得解:由余弦定理,得答:顶杆答:顶杆BCBC约长约长1.89m。 CAB22222 2cos 1

12、.951.402 1.95 1.40 cos66 20 3.571 1.89(m)BCABACAB ACABC 测量垂直高度测量垂直高度 1 1、底部可以到达的、底部可以到达的 测量出角测量出角C C和和BCBC的长度,解直的长度,解直角三角形即可求出角三角形即可求出ABAB的长。的长。 .,. 3的方法物高度设计一种测量建筑为建筑物的最高点不可到达的一个建筑物是底部例ABABAB图中给出了怎样的一个图中给出了怎样的一个几何图形?已知什么,几何图形?已知什么,求什么?求什么?想一想想一想BEAGHDC2 2、底部不能到达的、底部不能到达的 例例3 AB是底部是底部B不可到达的一个建筑物,不可到

13、达的一个建筑物,A为建筑为建筑物的最高点,设计一种测量建筑物高度物的最高点,设计一种测量建筑物高度AB的方法的方法分析:由于建筑物的底部分析:由于建筑物的底部B是不可到达的,所以不能直是不可到达的,所以不能直接测量出建筑物的高。由解接测量出建筑物的高。由解直角三角形的知识,只要能直角三角形的知识,只要能测出一点测出一点C到建筑物的顶部到建筑物的顶部A的距离的距离CA,并测出由点并测出由点C观察观察A的仰角,就可以计算的仰角,就可以计算出建筑物的高。所以应该设出建筑物的高。所以应该设法借助解三角形的知识测出法借助解三角形的知识测出CA的长的长。BEAGHDC)sin(sinaAChahAChAE

14、AB)sin(sinsinsin解:选择一条水平基线解:选择一条水平基线HG,使使H,G,B三点在同一条直线上。由三点在同一条直线上。由在在H,G两点用测角仪器测得两点用测角仪器测得A的的仰角分别是仰角分别是,CD=a,测角仪测角仪器的高是器的高是h.那么,在那么,在 ACD中,中,根据正弦定理可得根据正弦定理可得例例3. AB是底部是底部B不可到达的一个建筑物,不可到达的一个建筑物,A为建筑为建筑物的最高点,设计一种测量建筑物高度物的最高点,设计一种测量建筑物高度AB的方法的方法BEAGHDC).1(,3 .27.150, 4054,. 400mDCmBCACAB精确到求出山高部分的高为塔已

15、知铁角处的俯处测得在塔底的俯角面上一点处测得地铁塔上在山顶如图例分析:根据已知条件,应该设分析:根据已知条件,应该设法计算出法计算出AB或或AC的长的长A AB BC CD D )(177)1504054sin(4054sin150cos3 .27)sin(sincossin,mBCBADABBDABDRt得解CD=BD-BC177-27.3=150(m)答:山的高度约为答:山的高度约为150米。米。)sin(cos)sin()90sin(BCBCAB所以,)90sin()sin(ABBC解:在解:在ABC中,中,BCA= 90 +, ABC= 90 -, BAC=-, BAD=.根据正弦定理

16、,根据正弦定理,A AB BC CD D 例例5 5:如图:如图, ,一辆汽车在一条水平的公路上向一辆汽车在一条水平的公路上向正西行驶正西行驶, ,到到A A处时测得公路北侧远处一山顶处时测得公路北侧远处一山顶D D在西偏北在西偏北15150 0的方向上的方向上, ,行驶行驶5km5km后到达后到达B B处处, ,测测得此山顶在西偏北得此山顶在西偏北25250 0的方向上的方向上, ,仰角为仰角为8 80 0, ,求求此山的高度此山的高度CD CD 分析:要测出高分析:要测出高CD,只要测出只要测出高所在的直角三角形的另一条高所在的直角三角形的另一条直角边或斜边的长。根据已知直角边或斜边的长。

17、根据已知条件,可以计算出条件,可以计算出BC的长。的长。例例5 一辆汽车在一条水平的公路上向正东行驶,到一辆汽车在一条水平的公路上向正东行驶,到A处时测得处时测得公路南侧远处一山顶公路南侧远处一山顶D在东偏南在东偏南15的方向上,行驶的方向上,行驶5km后到后到达达B处,测得此山顶在东偏南处,测得此山顶在东偏南25的方向上,仰角的方向上,仰角8,求此山,求此山的高度的高度CD.解:在解:在ABC中,中,A=15, C= 25 15=10.根据正弦定理,根据正弦定理,CABABCsinsin).(4524. 710sin15sin5sinsinkmCAABBCCD=BCtanDBCBCtan81

18、047(m)答:山的高度约为答:山的高度约为1047米。米。变式:变式:某人在某人在M M汽车站的北偏西汽车站的北偏西20200 0的方的方向上的向上的A A处,观察到点处,观察到点C C处有一辆汽车处有一辆汽车沿公路向沿公路向M M站行驶。公路的走向是站行驶。公路的走向是M M站站的北偏东的北偏东40400 0。开始时,汽车到。开始时,汽车到A A的距离的距离为为3131千米,汽车前进千米,汽车前进2020千米后,到千米后,到A A的的距离缩短了距离缩短了1010千米。问汽车还需行驶千米。问汽车还需行驶多远,才能到达多远,才能到达M M汽车站?汽车站? :多应用实际测量中有许正弦定理和余弦定

19、理在.三、测量角度).01. 0,1 . 0(,.0 .5432,5 .6775,. 6000nmileCACnmileBBnmileA确到距离精角度精确到需要航行多少距离航行此船应该沿怎样的方向出发到达航行直接从如果下次后到达海岛的方向航行东沿北偏出发然后从后到达海岛航行的方向沿北偏东出发一艘海轮从如图例例例6 一艘海轮从一艘海轮从A出发,沿北偏东出发,沿北偏东75的方向航行的方向航行67.5n mile后到达海岛后到达海岛B,然后从然后从B出发,沿北偏东出发,沿北偏东32的方向航行的方向航行54.0n mile后到达海岛后到达海岛C.如果下次航行直接从如果下次航行直接从A出发到达出发到达C

20、,此船应该此船应该沿怎样的方向航行,需要航行多少距离(角度精确到沿怎样的方向航行,需要航行多少距离(角度精确到0.1,距距离精确到离精确到0.01n mile)?解:在解:在 ABC中,中,ABC1807532137,根据余弦定理,根据余弦定理,15.113137cos0 .545 .6720 .545 .67cos22222ABCBCABBCABAC练习练习1 1如下图是曲柄连杆机构的示意图,当曲柄如下图是曲柄连杆机构的示意图,当曲柄CB绕绕C点旋转点旋转时,通过连杆时,通过连杆AB的传递,活塞作直线往复运动,当曲柄在的传递,活塞作直线往复运动,当曲柄在CB位置时,曲柄和连杆成一条直线,连杆

21、的端点位置时,曲柄和连杆成一条直线,连杆的端点A在在A0处,设连处,设连杆杆AB长为长为340mm,由柄,由柄CB长为长为85mm,曲柄自,曲柄自CB按顺时针方按顺时针方向旋转向旋转80,求活塞移动的距离(即连杆的端点,求活塞移动的距离(即连杆的端点A移动的距移动的距离离 )(精确到)(精确到1mm) AA0已知已知ABC中,中, BC85mm,AB340mm,C80,求求AC 解:(如图)在解:(如图)在ABC中,中, 由正弦定理可得:由正弦定理可得:2462. 034080sin85sinsin ABCBCA因为因为BCAB,所以,所以A为锐角为锐角 , A1415 B180(AC)854

22、5 又由正弦定理:又由正弦定理:)(3 .3449848. 05485sin340sinsinmm CBABAC解解 题题 过过 程程)(817 .803 .344)85340()(00mm ACBCABACCAAA答:活塞移动的距离为答:活塞移动的距离为81mm 解:如图,在解:如图,在ABC中由余弦定理得:中由余弦定理得:784)21(201221220cos222222 BACACABABACBCA 2.我舰在敌岛我舰在敌岛A南偏西南偏西50相距相距12海里的海里的B处,发现敌舰正处,发现敌舰正由岛沿北偏西由岛沿北偏西10的方向以的方向以10海里海里/小时的速度航行问我舰需小时的速度航行

23、问我舰需以多大速度、沿什么方向航行才能用以多大速度、沿什么方向航行才能用2小时追上敌舰?小时追上敌舰?CB405010 我舰的追击速度为我舰的追击速度为14海里海里/小时,小时,28 BC 练习练习又在又在ABC中由正弦定理得:中由正弦定理得:1435sinsinsinsin BCAACBABCBAC故故 38B故我舰航行的方向为北偏东故我舰航行的方向为北偏东5038123. 3.5m长的木棒斜靠在石堤旁,棒的一端离堤足1.2m的地面上,另一端沿堤上2.8m的地方,求堤对地面的倾斜角。63.77总总 结结实际问题实际问题抽象概括抽象概括示意图示意图数学模型数学模型推理推理演算演算数学模型的解数

24、学模型的解实际问题的解实际问题的解还原说明还原说明作业作业: 课本课本19-20页页习题习题分分3次次布置:布置:14;57;810(第(第4 4课时)课时) 前面学习了用正弦定理和余弦定理解决实际前面学习了用正弦定理和余弦定理解决实际问题,体现了两个定理的广泛应用和生活中的问题,体现了两个定理的广泛应用和生活中的重要性重要性. .借助于正弦定理和余弦定理,我们也可借助于正弦定理和余弦定理,我们也可以进一步解决一些有关三角形的计算问题,以以进一步解决一些有关三角形的计算问题,以及一些三角恒等式问题及一些三角恒等式问题. .sinsinsinsinsinsin1sin21sin.211sinsi

25、n .22abcabcaABCBCCAABhhhhbCcBhcAaChaBbASahhbCSabCSbcAacB 在中,边,上的高分别记为 , ,那么它们如何用已知边和角来表示呢? ; ; . 根据三角形面积公式,和以上公式,可推出如下面积公式: 同理: 因此除了知道某条边和该边上的高因此除了知道某条边和该边上的高可求出三角形的面积外,如能知道三可求出三角形的面积外,如能知道三角形的任意两边以及它们夹角的正弦角形的任意两边以及它们夹角的正弦也可求出三角形的面积也可求出三角形的面积. .例例7 7 在在ABC中,根据下列条件,求三角中,根据下列条件,求三角形的面积形的面积S( (精确到精确到0.

26、1cm0.1cm ).).(1)(1)已知已知a =14.8cm,=14.8cm,c =23.5 cm,=23.5 cm,B=148.5=148.5;21(1)sin2123.5 14.8 sin148.590.9().2ScaBScm 解:应用,得 (2)(2)已知已知B=62.7=62.7, ,C =65.8=65.8, ,b=3.16cm=3.16cm;222sin(2),sinsinsin11sinsinsin,22sin180()180(62.765.8 )51.5 ,1sin65.8 sin51.53.164.0(cm ).2sin62.7bcbCcBCBCASbcAbBAB CS

27、解: 根据正弦定理, (3)已知三边的长分别为)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.222222222338.741.427.3cos0.767922 38.7 41.4sin1 cos1 0.76970.6384.1sin2138.7 41.4 0.6384511.4(cm ).2cabBcaBBScaBS解:()根据余弦定理的推论,得,由,得 在不同已知条件下求三角形的面积的问在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,认真观察可以应用解三角形面积的知识,认真观察已

28、知什么,尚缺什么,求出需要的元素,已知什么,尚缺什么,求出需要的元素,就可以求出三角形的面积就可以求出三角形的面积. 例例8 在某市进行城市环境建设中,要在某市进行城市环境建设中,要把一个三角形的区域改造成市内公园,把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边经过测量得到这个三角形区域的三条边长分别为长分别为68 m,88 m,127 m,这个,这个区域的面积是多少(精确到区域的面积是多少(精确到0.1 m)? 分析:本题可转化为已知三角形的三边,分析:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解求角的问题,再利用三角形的面积公式求解. 解:设解

29、:设a=68 m=68 m,b=88 m,=88 m,c=127 m=127 m,根据余弦定理的,根据余弦定理的推论,推论,2222222221276888cos0.753222 12768sin10.75320.6578.1sin2112768 0.65782840.4(m ).22840.4m .cabBcaBScaBS,由,得答:这个区域的面积是解题关键:解题关键: 利用正弦定理或余弦定理将已知条件转化为只利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状察边或角的关系,从而确定三角形的形状.特别是有特别是有些条件既可用正弦定理也可用余弦定理甚至可以两些条件既可用正弦定理也可用余弦定理甚至可以两者混用者混用.课后练习:课后练习: 课本课本18页练习页练习1,2,3.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁