《历年中考数学试题及答案大全.pdf》由会员分享,可在线阅读,更多相关《历年中考数学试题及答案大全.pdf(55页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20152015 年广东省初中毕业生学业考试年广东省初中毕业生学业考试数数学学一、选择题(本大题一、选择题(本大题 1010 小题,每小题小题,每小题 3 3 分,共分,共 3030 分)在每小题列出的四个选项中,只有一分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑个是正确的,请把答题卡上对应题目所选的选项涂黑. .1.2 A.2B.2C.12D.122. 据国家统计局网站 2014 年 12 月 4 日发布消息, 2014 年广东省粮食总产量约为 13 573 000吨,将 13 573 000 用科学记数法表示为()A.1.3573106B.1.3573
2、107C.1.3573108D.1.35731093. 一组数据 2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64. 如图,直线ab,1=75,2=35,则3 的度数是()A.75B.55C.40D.355. 下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形6.(4x)2A.8x2B.8x2C.16x2D.16x2B.平行四边形C.正五边形D.正三角形7. 在 0,2,(3)0,5这四个数中,最大的数是()A.0B.294C.(3)0D.58. 若关于x的方程x2 xa 0有两个不相等的实数根,则实数a的取值范围是()A.a29. 如题 9 图,某数学兴趣
3、小组将边长为 3 的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.6B.7C.8D.9B.a2C.a2D.a2110. 如题 10 图,已知正ABC的边长为 2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设 EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()二、填空题(本大题二、填空题(本大题 6 6 小题,每小题小题,每小题 4 4 分,共分,共 2424 分)请把下列各题的正确答案填写在答题分)请把下列各题的正确答案填写在答题卡相应的位置上卡相应的位置上. .11. 正五边形的外角和等于(度).12
4、. 如题 12 图,菱形ABCD的边长为 6,ABC=60,则对角线AC的长是13. 分式方程32的解是x1x.14. 若两个相似三角形的周长比为 2:3,则它们的面积比是15. 观察下列一组数:,是.132537495,根据该组数的排列规律,可推出第 10 个数1116. 如题 16 图,ABC三边的中线AD,BE,CF的公共点G,若SABC12,则图中阴影部分面积是.三、解答题(一)三、解答题(一) (本大题(本大题 3 3 小题,每小题小题,每小题 6 6 分,共分,共 1818 分)分). .17. 解方程:x23x2 0.218. 先化简,再求值:x1(1),其中x 2 1.x21x
5、119. 如题 19 图,已知锐角ABC.(1) 过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法) ;(2) 在(1)条件下,若BC=5,AD=4,tanBAD=,求DC的长.四、解答题(二)四、解答题(二) (本大题(本大题 3 3 小题,每小题小题,每小题 7 7 分,共分,共 2121 分)分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字 1,2,3 的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率, 于是小明同学用画树状图的方法寻求他两次抽取卡片
6、的所有可能结果,题20 图是小明同学所画的正确树状图的一部分.34(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.321. 如题 21 图, 在边长为 6 的正方形ABCD中,E是边CD的中点, 将ADE沿AE对折至AFE,延 长交BC于点G,连接AG.(1) 求证:ABGAFG;(2) 求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30 元,40 元.商场销售 5 台A型号和 1 台B型号计算器,可获利润 76 元;销售 6 台A型号和 3 台B型号计算器,可获利润 120 元.(1) 求商场销售A,B两种型号
7、计算器的销售价格分别是多少元?(利润=销售价格进货价格)(2) 商场准备用不多于 2500 元的资金购进A,B两种型号计算器共 70 台,问最少需要购进A型号的计算器多少台?4五、解答题(三)五、解答题(三) (本大题(本大题 3 3 小题,每小题小题,每小题 9 9 分,共分,共 2727 分)分)23. 如题 23 图,反比例函数y (k0,x0)的图象与直线y 3x相交于点C,过直线上点kxA(1,3)作ABx轴于点B,交反比例函数图象于点D,且AB=3BD.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.24.
8、 O是ABC的外接圆,AB是直径,过BC的中点P作O的直径PG交弦BC于点D,连接AG,CP,PB.(1) 如题 241 图;若D是线段OP的中点,求BAC的度数;(2) 如题 242 图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题 243 图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PHAB.525. 如题 25 图,在同一平面上,两块斜边相等的直角三角板RtABC与RtADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,ABC=ADC=90,CAD=30,AB=BC=4cm.(1) 填空:AD=(cm),D
9、C=(cm);(2) 点M,N分别从A点,C点同时以每秒 1cm的速度等速出发,且分别在AD,CB上沿AD,CB的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设PMN的面积为y(cm2),在整个运动过程中,PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75=6 26 2,sin15=)446广东省广东省 20132013 年初中毕业生学业考试年初中毕业生学业考试数数学学试试题题说明:全卷共 4 页,考试时间为 100 分钟,满分 120
10、分一、选择题(本大题共一、选择题(本大题共1010 小题,每小题小题,每小题 3 3 分,共分,共3030 分在每小题给出的分在每小题给出的4 4 个选项中,只有一项是符合题个选项中,只有一项是符合题目要求的目要求的 )1一个正方体的面共有()A1 个 B2 个 C4 个 D6 个2数据 1,1,2,2,3,3,3 的极差是()A1 B2 C3 D633的绝对值是()A3 B3 C4一个正方形的对称轴共有()A1 条 B2 条 C4 条 D无数条5若a b 3,则ba的值是()A3 B3 C0 D66如图 1,AB是O的直径,ABC=30,则BAC =()A90 B60 C45 D307如图
11、2,箭头表示投影线的方向,则图中圆柱体的正投影是()A圆 B圆柱 C梯形 D矩形8下列式子正确的是()Aa0 Ba0 Ca+11 Da119在直角坐标系中,将点P(3,6)向左平移4 个单位长度,再向下平移8 个单位长度后,得到的点位于()A第一象限 B第二象限 C第三象限D第四象限2211 D33710从n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为A54 B52 C10 D5二、填空题(本大题共 5 小题,每小题 3 分,共 15 分 )11因式分解:x 2x 1 = .12如图3,P是AOB的角平分线上的一点,PCOA于点21,则n=()5C,PDOB于点D, 写出图中一对
12、相等的线段 (只需写出一对即可) .13圆的半径为 3cm,它的内接正三角形的边长为 .14边长为cm 的菱形,一条对角线长是6cm,则另一条对角线的长是 .15已知2 2,2 4,2=8,2=16,2 =32,观察上面规律,试猜想2200812345的末位数是 .三、解答题(本大题共10 小题,共 75 分解答应写出文字说明,证明过程或演算步骤)16.(本小题满分 6 分)计算:( 3) 117.(本小题满分 6 分)在 RtABC中,C= 90,a=3 ,c=5,求 sinA和 tanA的值.18.(本小题满分 6 分)解不等式:10 x 3(20 x)70.801 21.219.(本小题
13、满分 7 分)如图 4, E、F、G分别是等边ABC的边AB、BC、AC的中点.(1) 图中有多少个三角形?(2) 指出图中一对全等三角形,并给出证明.20.(本小题满分 7 分)在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800 千米,南线的路程约 80 千米,走南线的车队在西线车队出发18 小时后立刻启程,结果两车队同时到达已知两车队的行驶速度相同,求车队走西线所用的时间.21.(本小题满分 7 分)如图 5,在等腰 RtABC中,C=90,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=2cm,求正方
14、形DEFG的边长.22.(本小题满分 8 分)已知点A(2,6) 、B(3,4)在某个反比例函数的图象上.(1) 求此反比例函数的解析式;(2)若直线ymx与线段AB相交,求m的取值范围.923.(本小题满分分)在 2008 北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环) :甲10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2乙9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7() 两名运动员射击成绩的平均数分别是多少?() 哪位运动员的发挥比较稳定?(参考数据: 0.20.3 0.2 0.4
15、1 0.6 0.3 0.6=2.14 ,222222220.12 0.32 0.22 0.12 0.92 0.22 0.22 0.52 0.42 0.12=1.46)24.(本小题满分 10 分)如图 6,在 RtABC中,ABC=90,D是AC的中点,O经过A、B、D三点,CB的延长线交O于点E.(1) 求证AE=CE;(2)EF与O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求O的直径;(3)若25.(本小题满分 10 分)已知点A(a,y1) 、B(2a,y2) 、C(3a,y3)都在抛物线y 5x 12x上.(1)求抛物线与x轴的交点坐标;(2)当a=1 时,求ABC的面积
16、;(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.102CF,求 sinCAB. n(n0)CD20122012 年年初初中中毕毕业业生生学学业业考考试试数数学学试试题题说明:全卷共说明:全卷共 4 4 页,考试时间为页,考试时间为 100100 分钟,满分分钟,满分 120120 分分一、选择题(本大题共一、选择题(本大题共1010 小题,每小题小题,每小题 3 3 分,共分,共3030 分在每小题给出的分在每小题给出的4 4 个选项中,只有一项是符合题个选项中,只有一项是符合题目要求的目要求的 )1计算3 2的结果是A1 B1
17、C 5 D52点M(2,1)向上平移 2 个单位长度得到的点的坐标是A (2,0) B (2,1) C (2,2) D (2,3)3如图 1,已知D、E在ABC的边上,DEBC,B = 60,AED= 40,则A的度数为 A100 B90 C80 D704用科学记数法表示 5700000,正确的是A5.710 B5710C57010 D0.57105一个多边形的内角和与外角和相等,则这个多边形是A四边形 B五边形C六边形 D八边形6如图 2 是某几何体的三视图,则该几何体是A圆锥 B圆柱C三棱柱 D三棱锥7要使式子2 x有意义,则x的取值范围是Ax 0 Bx 2Cx 2 Dx 28下列数据 3
18、,2,3,4,5,2,2 的中位数是A5 B4C3 D211俯视图主视图左视图4765ADB图 1EC图 29等腰三角形两边长分别为4 和 8,则这个等腰三角形的周长为 A16 B18 C20 D16 或 2010某校学生来自甲、乙、丙三个地区,其人数比为 2:3:5,如图3 所示的扇形图表示上述分布情况已知来自甲地区的为 180 人,则下列说法不正确的是 A扇形甲的圆心角是 72 B学生的总人数是 900 人 C丙地区的人数比乙地区的人数多180 人 D甲地区的人数比丙地区的人数少180 人二、填空题(本大题共 5 小题,每小题 3 分,共 15 分 )11计算20 图 3甲丙乙1的结果是5
19、12正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为度 13菱形的两条对角线的长分别为6 和 8,则这个菱形的周长为14扇形的半径是 9 cm,弧长是 3cm,则此扇形的圆心角为度15观察下列一组数:个数是三、解答题(本大题共 10 小题,共 75 分解答应写出文字说明,证明过程或演算步骤 )16 (本小题满分 6 分)解不等式:2(x3) 4 0,并把解集在下列的数轴上(如图4)表示出来17 (本小题满分 6 分)计算:12246810, ,它们是按一定规律排列的,那么这一组数的第k357911-2-1012图 43 2 6sin450 4118 (本小题满分 6 分)从 1 名男生
20、和 2 名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:(1)抽取 1 名,恰好是男生;(2)抽取 2 名,恰好是 1 名女生和 1 名男生19 (本小题满分 7 分)如图 5,已知ACBC,BDAD,AC与BD交于O,AC=BD求证: (1)BC=AD;(2)OAB是等腰三角形20 (本小题满分 7 分)先化简,后求值:(121 (本小题满分 7 分)顺安旅行社组织 200 人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2 倍少 1 人,到两地旅游的人数各是多少人?22 (本小题满分 8 分)如图 6,四边形ABCD是矩形,对角线AC、BD相交于点O,BEAC交DC的延长
21、线于点E.(1)求证:BD=BE;(2)若DBC=30,BO=4,求四边形ABED的面积.23 (本小题满分 8 分)已知反比例函数y AOBCDA图 5BDOC1x,其中x=-4) 2x 1x 1图 6Ek 1图象的两个分支分别位于第一、第三象限x(1)求k的取值范围;13(2)若一次函数y 2x k的图象与该反比例函数的图象有一个交点的纵坐标是4求当x 6时反比例函数y的值;当0 x 24 (本小题满分 10 分)如图 7,在ABC中,AB=AC,以AB为直径的O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:AE1时,求此时一次函数y的取值范围2(1)D是BC的中点;(2)B
22、ECADC;(3)ABCE=2DPAD25 (本小题满分 10 分)B图 7OPDC已知二次函数y mx nx p图象的顶点横坐标是 2,与x轴交于A(x1,0) 、2B(x2,0) ,x10 x2,与y轴交于点C,O为坐标原点,tanCAO tanCBO 1(1)求证:n 4m 0;(2)求m、n的值;(3)当p0 且二次函数图象与直线y x 3仅有一个交点时,求二次函数的最大值1420112011 年初中毕业生学业考试年初中毕业生学业考试数学试题数学试题说明:全卷共说明:全卷共 4 4 页考试时间为页考试时间为 100100 分钟满分分钟满分 120120 分分一、选择题一、选择题( (本
23、大题共本大题共 l l 0 0 小题,每小题小题,每小题 3 3 分,共分,共 3030 分在每小题给出的分在每小题给出的 4 4 个选项中,只有一项是符合题个选项中,只有一项是符合题目要求的目要求的) )11的倒数是2B2 C A211D225672我国第六欢人口普查的结果表明,目前肇庆市的人口约为4050000 人,这个数用科学记教法表示为A40510 B40.510 C4.0510 D4.05103如图 1 是一个几何休的实物图,则其主视图是44方程组x y 2的解是2x y 4Ax 3x 1x 0 x 2BC Dy 1y 2y 2y 05如图2,已知直线abc,直线m、n 与直线 a、
24、bc 分荆交于点 A、C、E、B、D、F,AC=4,CE=6,BD=3,则 BF=A7 B7.5 C . 8 D8.56点 M(2,1)关于 x 轴对称的点的坐标是A (2,1) B (21) C(2,1) D (12)7如图 3,四边形 ABCD 是圆内接四边形,E 是 BC 延长线上一点,若BAD=105,则DCE 的大小是A115 B l05 C100 D958某住宅小区六月份 1 日至 5 日母天用水量变化情况如图4 所示那么这 5 天平均母天的用水量是 A30 吨 B31 吨 C32 吨 D33 吨159已知正六边形的边心距为3,则它的周长是 A6 B12 C6 310二次函教y x
25、 2x5有 A最大值5 B最小值5 C最大值6 D最小值6二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)11化简:12= _12下列数据 5,3,6,7,6,3,3,4,736 的众数是_13在直角三角形 ABC 中,C=90,BC=12,AC=9,则 AB=_14已知两圆的半径分别为1 和 3若两圆相切,则两圆的圆心距为_15如图 5 所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第 n (n 是大干 0 的整数)个图形需要黑色棋子的个教是_2D12 3三解答题(本大题共 l0 小题,共 75 分解答应写出文字说明,证明过程或演算步骤)16(本小题满
26、分 6 分)计算:29 2cos 6017(本小题满分 6 分)解不等式组:103x 62 x 518(本小题满分 6 分)如图 6 是一个转盘转盘分成8 个相同的图形,颜色分为红、绿、黄三种指针的位置固定,转动转盘后任其兹有停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形)求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色。1619(本小题满分 7 分)a241(1),其中a 3先化简,再求值:a3a220(本小题满分 7 分)如罔 7,在一方形 ABCD 中E 为对角线 AC 上一点,连接 EB、ED,(1)求证:BECDEC:(2)延
27、长 BE 交 AD 于点 F,若DEB=140求AFE 的度数21(本小题满分 7 分)肇庆市某施工队负责修建1800 米的绿道为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20,结果提前两天完成求原计划平均每天修绿道的长度22(本小题满分 8 分)如图 8矩形 ABCD 的对角线相交于点 0DEAC,CEBD(1)求证:四边形 OCED 是菱形;(2)若ACB=30,菱形 OCED 的而积为8 3,求 AC 的长23(本小题满分 8 分)如图 9一次函数y xb的图象经过点 B(1,0),且与反比例函数y k (k为不等于 0 的常数)的图象在第一象限交于点A(1,n)求:x(
28、1)一次函数和反比例函数的解析式;(2)当1 x 6时,反比例函数y的取值范围1724(本小题满分 10 分)己知:如图 10ABC 内接于O,AB 为直径,CBA 的平分线交 AC 干点 F,交O 于点 D,DFAB于点 E,且交 AC 于点 P,连结 AD。(1)求证:DAC=DBADCPAEOFB(2)求证:P 处线段 AF 的中点(3)若O 的半径为 5,AF=25(本小题满分 10 分)已知抛物线y x mx215,求 tanABF 的值。232m (m 0)与 x 轴交干 A、B 两点。4(1)求证:抛物线的对称轴在y 轴的左恻:(2)若112 (O 为坐标原点),求抛物线的解析式
29、;OBOA3(3)设抛物线与 y 轴交于点 C,若ABC 是直角三角形求ABC 的面积182010 年初中毕业生学业考试数学试题一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)13 的相反数是()11A3 B3 C D3322010 年上海世博会首月游客人数超8030000 人次,8030000 用科学记数法表示是()4567A80310 B80.310 C8.0310 D8.0310B3如图,已知ABCD,A50,CE则C()A20 B2550C30 D40A4不等式组x12x1DE的解集是()CA1x3 Bx3 Cx1 Dx135在ABC中,C90,AC9,sinB,则AB
30、()5A15 B12 C9 D66已知两圆的半径分别为1 和 4,圆心距为 3,则两圆的位置关系是()A外离 B外切 C相交 D内切7下列四个几何体中,主视图、左视图与俯视图是全等形的几何体是()A球 B圆柱 C三棱柱 D圆锥8一个多边形的内角和是外角和的2 倍,则这个多边形是()A四边形 B五边形 C六边形 D八边形9袋子中装有 4 个黑球 2 个白球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到黑球的概率是()1112A B C D623310菱形的周长为 4,一个内角为 60,则较短的对角线长为()A2 B 3 C1 D2 3二、填空题(本大题共 5 小题,每小题 3 分,共
31、15 分)127 11计算:312如图,点A、B、C都在O上,若C35,则AOB度OABC2213 某剧团甲乙两个女舞蹈队的平均身高都是1.65 米, 甲队身高的方差是S甲1.5, 乙队身高的方差是S乙2.4,那么两队中身高更整齐的是队(填“甲”或“乙”)1475的圆心角所对的弧长是2.5cm,则此弧所在圆的半径是 cm234515观察下列单项式:a,2a,4a,8a,16a,按此规律,第n个单项式是(n是正整数)三、解答题(本大题共 10 小题,共 75 分)0116(6 分)计算:(8) 3 tan30 31917(6 分)已知一次函数ykx4,当x2 时,y3(1)求一次函数的解析式;(
32、2)将该函数的图象向上平移6 个单位,求平移后的图象与x轴交点的坐标18(6 分)我市某企业向玉树地震灾区捐助价值26 万元的甲、乙两种帐篷共300 顶已知甲种帐篷每顶800 元,乙种帐篷每顶 1000 元,问甲、乙两种帐篷各多少顶?19(7 分)如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:(1)田径队共有多少人?队员人数(2)该队队员年龄的众数和中位数分别是多少?4(3)该队队员的平均年龄是多少?321015 岁16 岁17 岁18 岁 年龄1x2x120(7 分)先化简,后求值:1x2x24,其中x5221(7 分)如图,四边形ABCD是平行四边形,AC、BD交于
33、点O,12(1)求证:四边形ABCD是矩形;(2)若BOC120,AB4cm,求四边形ABCD的面积ADO2C1B22(8 分)如图,已知ACB90,ACBC,BECE于E,ADCE于D,CE与AB相交于F(1)求证:CEBADC;B(2)若AD9cm,DE6cm,求BE及EF的长EFDAC2023(8 分)如图是反比例函数y2n4的图象的一支,根据图象回答下列问题:x(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数图象经过点(3,1),求n的值;(3)在这个函数图象的某一支上任取点A(a1,b1)和点B(a2,b2),如果a1a2,试比较b1和b2的大小y42xO2424(
34、10 分)如图,AB是O的直径,AC切O于点A,且ACAB,CO交O于点P,CO的延长线交O于点F,BP的延长线交AC于点E,连接AP、AFC求证:(1)AFBE;(2)ACPFCA;(3)CPAEEPBAOF225(10 分)已知二次函数yxbxc1 的图象过点P(2,1)(1)求证:c2b4;(2)求bc的最大值;3(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),ABP的面积是,求b的值42120092009 年初中毕业生学业考试年初中毕业生学业考试数数 学学 试试 题题说明:全卷共说明:全卷共 4 4 页,考试时间为页,考试时间为 100 100 分钟,满分分钟,满分
35、120 120 分分一、选择题(本大题共一、选择题(本大题共 10 10 小题,每小题小题,每小题 3 3 分,共分,共 3030 分在每小题给出的分在每小题给出的 4 4 个选项中,只有一项是符个选项中,只有一项是符合题目要求的合题目要求的 )12008 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标用科学记数法表示数 1 千亿,正确的是()891112A100010 B100010 C10 D102实数2,0.3,1,2,中,无理数的个数是()7A2 B3 C4 D53下列图形中,不是轴对称图形的是()A等边三角形 B平行四边形 C圆 D等腰梯形4如图 1 是 1998
36、 年参加国际教育评估的 15 个国家学生的数学平均成绩的统计图,则平均成绩大于或等于 60 的国家个数是()A4 B8 C10 D12频数(国家个数)8左视图主视图642俯视图O40 50 60 70 80成绩图 2图 15某几何体的三视图如图2,则该几何体是()A球 B圆柱 C圆锥 D长方体6函数y x2的自变量x的取值范围是()Ax 2 Bx 2 Cx2 Dx2x3的值为零,则x的值是()x3A3 B3 C3 D08如图 3,RtABC中,ACB 90,DE过点C,且DEAB,若ACD 55,则B的度7若分式数是()A35 B45 C55 D6522ADC图 3DBPCOEA图 4B9如图
37、 4,O是正方形ABCD的外接圆,点P在O上,则APB等于()A30 B45 C55 D6010若O1与O2相切,且O1O2 5,O1的半径r1 2,则O2的半径r2是()A3 B5 C7 D3 或 7二、填空题(本大题共二、填空题(本大题共 5 5 小题,每小题小题,每小题 3 3 分,共分,共 1515 分分 )11在平面直角坐标系中,点P(2, 3)关于原点对称点P的坐标是12某校九年级(2)班(1)组女生的体重(单位:kg)为:38,40,35,36,65,42,42,则这组数据的中位数是1375的圆心角所对的弧长是2.5,则此弧所在圆的半径为14若正六边形的边长为2,则此正六边形的边
38、心距为15观察下列各式:11111,1323351111111 ,根据观察计算:235572571111335571 (n为正整数)(2n1)(2n1)三、解答题(本大题共三、解答题(本大题共 1010 小题,共小题,共 7575 分解答应写出文字说明,证明过程或演算步骤分解答应写出文字说明,证明过程或演算步骤 )16 (本小题满分 6 分)1计算:| 2 |sin45 ( 2009)0217 (本小题满分 6 分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一其中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚问金、银、铜牌各多少枚?18 (本小题满
39、分 6 分)掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于 2 且小于 519 (本小题满分 7 分)如图 5,ABCD是菱形,对角线AC与BD相交于O,ACD 30 ,BD 6(1)求证:ABD是正三角形;D(2)求AC的长(结果可保留根号) ACO231B图 520 (本小题满分 7 分)x y2xy y2已知x 2008,y 2009,求代数式x的值xx21 (本小题满分 7 分)如图 6,ABCD是正方形G是 BC上的一点,DEAG于E,BFAG于 F(1)求证:ABF DAE;A(2)求证:DE EF FBEFBG图 622 (本小题满分 8 分)
40、如图 7,已知一次函数y1 x m(m为常数)的图象与反比例函数y2图象相交于点 A(1,3) (1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值y1 y2的自变量x的取值范围y321A(1,3)DCk(k为常数,k 0)的x112 3xB1图 723 (本小题满分 8 分)如图 8,在ABC中,AB AC,A36,线段 AB的垂直平分线交 AB于 D,交 AC于 E,连接BE(1)求证:CBE=36;A2(2)求证:AE AC EC24DBEC图 824 (本小题满分 10 分)已知一元二次方程x px q 1 0的一根为 2(1)求q关于p的关系式;(2)求
41、证:抛物线y x px q与x轴有两个交点;(3)设抛物线y x px q的顶点为 M,且与x轴相交于A(x1,0) 、B(x2,0)两点,求使222AMB面积最小时的抛物线的解析式25 (本小题满分 10 分)如图 9,O的直径AB 2,AM和BN是它的两条切线,DE切O于E,交AM于D,交BN于C设AD x,BC y(1)求证:AM BN;(2)求y关于x的关系式;(3)求四边形ABCD的面积S,并证明:S2AOB图 9CNDEM25广东省广东省 20082008 年初中毕业生学业考试年初中毕业生学业考试数数学学试试题题说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分一、选
42、择题(本大题共10 小题,每小题 3 分,共 30 分在每小题给出的4 个选项中,只有一项是符合题目要求的 )1一个正方体的面共有()A1 个 B2 个 C4 个 D6 个2数据 1,1,2,2,3,3,3 的极差是()A1 B2 C3 D633的绝对值是()A3 B3 C4一个正方形的对称轴共有()A1 条 B2 条 C4 条 D无数条5若a b 3,则ba的值是()A3 B3 C0 D66如图 1,AB是O的直径,ABC=30,则BAC =()A90 B60 C45 D307如图 2,箭头表示投影线的方向,则图中圆柱体的正投影是()A圆 B圆柱 C梯形 D矩形8下列式子正确的是()Aa0
43、Ba0 Ca+11 Da119在直角坐标系中,将点P(3,6)向左平移4 个单位长度,再向下平移8 个单位长度后,得到的点位于()A第一象限 B第二象限 C第三象限D第四象限262211 D3310从n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为A54 B52 C10 D5二、填空题(本大题共 5 小题,每小题 3 分,共 15 分 )11因式分解:x 2x 1 = .21,则n=()512如图 3,P是AOB的角平分线上的一点,PCOA于点 C,PDOB于点D,写出图中一对相等的线段(只需写出一对即可) .13圆的半径为 3cm,它的内接正三角形的边长为 .14边长为cm 的菱
44、形,一条对角线长是6cm,则另一条对角线的长是 .15已知2 2,2 4,2=8,2=16,2 =32,观察上面规律,试猜想2200812345的末位数是 .三、解答题(本大题共10 小题,共 75 分解答应写出文字说明,证明过程或演算步骤)16.(本小题满分 6 分)计算:( 3) 117.(本小题满分 6 分)在 RtABC中,C= 90,a=3 ,c=5,求 sinA和 tanA的值.18.(本小题满分 6 分)解不等式:10 x 3(20 x)70.19.(本小题满分 7 分)如图 4, E、F、G分别是等边ABC的边AB、BC、AC的中点.(1) 图中有多少个三角形?(2) 指出图中
45、一对全等三角形,并给出证明.2701 21.220.(本小题满分 7 分)在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800 千米,南线的路程约 80 千米,走南线的车队在西线车队出发18 小时后立刻启程,结果两车队同时到达已知两车队的行驶速度相同,求车队走西线所用的时间.21.(本小题满分 7 分)如图 5,在等腰 RtABC中,C=90,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=2cm,求正方形DEFG的边长.22.(本小题满分 8 分)已知点A(2,6) 、B(3,4)在某个反比例函数的图象上.
46、(1) 求此反比例函数的解析式;(2)若直线ymx与线段AB相交,求m的取值范围.2823.(本小题满分分)在 2008 北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环) :甲10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2乙9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7() 两名运动员射击成绩的平均数分别是多少?() 哪位运动员的发挥比较稳定?(参考数据: 0.20.3 0.2 0.4 1 0.6 0.3 0.6=2.14 ,222222220.12 0.32 0.22 0.12 0.92
47、 0.22 0.22 0.52 0.42 0.12=1.46)24.(本小题满分 10 分)如图 6,在 RtABC中,ABC=90,D是AC的中点,O经过A、B、D三点,CB的延长线交O于点E.(3) 求证AE=CE;(4)EF与O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求O的直径;(3)若25.(本小题满分 10 分)已知点A(a,y1) 、B(2a,y2) 、C(3a,y3)都在抛物线y 5x 12x上.(1)求抛物线与x轴的交点坐标;(2)当a=1 时,求ABC的面积;(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说
48、明理由.2CF,求 sinCAB. n(n0)CD29历年中考数学试题参考答案历年中考数学试题参考答案20152015 中考试题中考试题一、选择题1、A 2、B 3、B 4、C 5、A 6、D 7、B 8、C 9、D 10、D二、填空题11、360 12、6 13、x=2 14、4:9 15、1021 16三、解答题(一)17.解:(x-1)(x-2)=0 x1=1,x2=218.解:原式=xx21xx1x(x1)(x1)x1x1x1把x 2 1代入得:原式=2219.(1)(2)解:tanBAD BDAD34且AD=4,BD=3CD=5-3=2四、解答题(二)20.(1)(2)4921.(1
49、)证明:AB=AD=AF,AG=AG,ABG=AFG=90ABG 和AFG 全等(HL)(2)设 BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3在 RtGCE 中, (x+3)2=32+(6-x)2解得:x=222. (1)设 A 型号每台的价格为 x,B 型号的为 y,由题意得:30、45(x30) y40 76x 42解得:6(x30)3(y40) 120y 56(2)设 A 型号的购进 x 台,则 B 型号的为(70-x)台,由题意得:30 x 40(70 x) 2500解得:x30A 型号的最少要 30 台五、解答题(三)23.(1)AB=3BD,AB=3BD=1D 点坐
50、标为(1,1)代入y k得:k=1x31解得:C 点坐标为(, 3)3x (2)联立 y=3x 与y (3)作 D 点关于 y 轴的对称点 E(-1,1) ,连接 CE,则 CE 与 y 轴的交点就是所求的点M设 CE 的直线解析式为 y=kx+b,代入 E,C 两点坐标解得: k=2 33, b=2 3 2M 点坐标为(0,2 3 2)24.(1).P 点为弧 BC 的中点,且 OP 为半径OPBC又AB 为直径,ACB=90AC/OPBAC=BOD又cosBOD ODOD1,BOD=60OBOP2BAC=60 (2) 由(1)得:AC/GK, DC=DB又DK=DP 用 SAS 易证明:C