《信号与系统仿真实验报告.docx》由会员分享,可在线阅读,更多相关《信号与系统仿真实验报告.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、信号与系统仿真实验报告 信号与系统 仿真 实 验 报 告 班级: 学号: 姓名: 学院: 试验一 一、试验者姓名: 二、试验时间: 三、试验地点: 四、试验题目: 5(s2+5s+6)求三阶系统H(s)=3的单位阶跃响应,并绘制响应波形图。 s+6s2+10s+8 五、解题分析:要知道求单位阶跃响应需知道所用函数,以及产生波形图所须要用到的函数。 六、试验程序: num=5 25 30; den=1 6 10 8; step(num,den,10); title(Step response) 七、试验结果: 试验所得波形图如下: Step response4.543.53Amplitude2.
2、521.510.50012345Time (sec)678910 八、试验心得体会:通过本次试验了解学会了一些新的函数的应用。了解到了N阶系统的单位阶跃响应的计算方法,和系统的响应波形图的函数应用和绘制方法。为后面的试验打下基础,并对信号仿真和信号与系统这门课程之间的联系有所增加,对信号与系统这门课里的问题也有了更加深化地了解。 九、试验改进想法:无。 试验二 一、试验者姓名: 二、试验时间: 三、试验地点: 四、试验题目: 一个因果线性移不变系统y(n)=0.81y(n-2)+x(n)-x(n-2),求:(1)H(z);(2)冲激响应h(n);(3)单位阶跃响应u(n);(4)H(ejw),
3、并绘出幅频和相频特性。 五、解题分析:离散卷积是数字信号处理中的一个基本运算,MTLAB供应的计算两个离散序列卷积的函数是conv,其调用方式为 y=conv(x,h) 。其中调用参数x,h为卷积运算所需的两个序列,返回值y是卷积结果。 MATLAB函数conv的返回值y中只有卷积的结果,没有y的取值范围。由离散序列卷积的性质可知,当序列x和h的起始点都为k=0时,y的取值范围为k=0至length(x)+length(h)-2。 很多离散LTI都可用如下的线性常系数的差分方程描述 ayk-n=bxk-n nnn=0n=0NN其中xk、yk分别系统的输入和输出。在已知差分方程的N个初始状态yk
4、,和输入xk,就可由下式迭代计算出系统的输出 yk=-(an/a0)yk-n+(bn/b0)xk-n n=1n=0NM利用MATLAB供应的filter函数,可便利地计算出上述差分方程的零状态响应。filter函数调用形式为 y=filter(b,a,x) 。其中 a=a0,a1,.,aN,b=b0,b1,.,bM ,分别表示差分方程系数。X表示输入序列,y表示输出序列。输出序列的长度和序列相同。 当序列的DTFT可写成ejW的有理多项式时,可用MATLAB信号处理工具箱供应的freqz函数计算DTFT的抽样值。另外,可用MATLAB供应的abs、angle、real、imag等基本函数计算
5、DTFT的幅度、相位、实部、虚部。若X(ejW)可表示为 b0+b1e-jW+.bMe-jWMB(ejW) X(e)=jW-jW-jWNA(e)a0+a1e+.+aNe则freqz的调用形式为 X=freqz(b,a,w) ,其中的b和 a分别是表示前一个 jW式子中分子多项式和分母多项式系数的向量,即a=a0,a1,.,aN ,w为抽样的频率点,向量w的长度至少为2。返回值X就是DTFTb=b0,b1,.,bM。在抽样点w上的值。留意一般状况下,函数freqz的返回值X是复数。 六、试验程序: clc;clear;close; b=1 0 -1; a=1 0 -0.81; figure(1)
6、; subplot(2,1,1); dimpulse(b,a,20) subplot(2,1,2); dstep(b,a,50) w=0:1:512*pi/512; figure(2); freqz(b,a,w) 七、试验结果: 冲击响应图及阶跃响应图: Impulse Response1Amplitude0.50-0.50246810Time (sec)Step Response12141618201Amplitude0.500510152025Time (sec)3035404550 100Magnitude (dB)0-100-200-30000.10.20.30.40.50.60.70
7、.8Normalized Frequency (p rad/sample)0.91100Phase (degrees)500-50-10000.10.20.30.40.50.60.70.8Normalized Frequency (p rad/sample)0.91 八、试验心得体会:通过试验我们知道了运用Matlab来绘出出一个线性移不变系统的幅频和相频曲线。并知道了在信号与系统中得一些差分方程和各种响应,譬如零输入相应、零状态响应、全响应、自由响应、强迫响应、冲击响应、单位阶跃响应等等各种响应在Matlab中的函数表达方式和他们的求法,以及系统的幅频和相频曲线的绘制都有了肯定深刻的相识。
8、九、试验改进想法:无。 试验三 一、试验者姓名: 二、试验时间: 三、试验地点: 四、试验题目: 模拟信号x(t)=2sin(4pt)+5cos(8pt),求N=64的DFT的幅值谱和相位谱。 五、解题分析:在MATLAB信号处理工具箱中,MATLAB供应了4个内部函数用于计算DFT和IDFT,它们分别是:fft(x),fft(x,N),ifft(X),ifft(X,N)。 fft(x) 计算M点的DFT。M是序列x的长度,即M=length(x)。 fft(x,N) 计算N点的DFT。若MN,则将原序列截短为N点序列,再计算其N点DFT;若M ifft(X) 计算M点的IDFT。M是序列X的
9、长度。 ifft(X,N) 计算N点IDFT。若MN,则将原序列截短为N点序列,再计算其N点IDFT;若M 六、试验程序: clc;clear;close; N=64; n=0:63; t=d*n; q=n*2*pi/N; x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); subplot(3,1,1); plot(t,x); title(source signal); subplot(3,1,2); plot(q,abs(y); title(magnitude); subplot(3,1,3); plot(q,angle(y); title(phase);
10、七、试验结果: 180160140120220806040200|F(k)|05101520Frequency253035 180160140120220806040200|F(k)|05101520Frequency253035 4321|jW|0-1-2-3-405101520Frequency253035Step Response400020000-2000 Amplitude-4000-6000-8000-10000-12000-1400001234n (samples)5678 八、试验心得体会:通过本次试验我知道了求取模拟信号在N等于肯定值时的的DFT的幅值谱和相位谱的求法。通过本
11、次试验,对幅值谱和相位谱有了更深的了解,并与课程信号与系统里的一些相关学问连接到了一起,使得学到的只是更加深刻、有意义。 九、试验改进想法:无。 试验四 一、试验者姓名: 二、试验时间: 三、试验地点: 四、试验题目: 将信号x(t)=sin(240pt)做离散序列,比较原序列与经过FFT和IFFT变换后的序列,并做出说明。 五、解题分析:此题须要对信号做离散序列,还要做FFT和IFFT变换,然后得到图像进行比较。连续时间函数与离散时间函数在编程中的区分主要体现在如下两个方面:第一,自变量的取值范围不同,离散时间函数的自变量是整数,而连续时间函数的自变量为肯定范围内的实数;其次,绘图所用的函数
12、不同,连续函数图形的绘制不止一个。本试验中要求绘制离散时间信号图,可以应用MATLAB中的函数来实现。用MATLAB表示一离散序列,可用两个向量来表示。其中一个向量表示自变量的取值范围,另一个向量表示序列的值。之后画出序列波形。当序列是从0起先时,可以只用一个向量x来表示序列。由于计算机内寸的限制,MATLAB无法表示一个无穷长的序列。对于典型的离散时间信号,可用逻辑表达式来实现不同自变量时的取值。 六、试验程序: t=0:1/255:1; x=sin(2*pi*120*t); y=real(ifft(fft(x); subplot(2,1,1); plot(t,x); title(原波形);
13、 subplot(2,1,2); plot(t,y); 七、试验结果: 原波形10.50-0.5-100.10.20.30.40.50.60.70.80.91复原的波形10.50-0.5-100.10.20.30.40.50.60.70.80.91 八、试验心得体会:通过对做信号的离散序列以及经FFT和IFFT的变换,了解了相关特性。通过计算机做出的信号波形图,我们能够很直白的看出原波形和经过变换后的波形的差别。 九、试验改进想法:无。 试验五 一、试验者姓名: 二、试验时间: 三、试验地点: 四、试验题目: 2s,激励信号22(s+1)+100x(t)=(1+cot)s*co1s0(t)0,
14、求(1)带通滤波器的频率响应;(2)输出稳态响应并绘制图形。 已知带通滤波器的系统函数为H(s)= 五、解题分析:须要知道求频率响应的方法,并绘制图形。 六、试验程序: clear; t=linspace(0,2*pi,1001); w=99,100,101; U=0.5,1,0.5; b=2,0; a=1,2,10001; u1=U*cos(w*t+angle(U)*ones(1,1001); H=polyval(b,j*w)./polyval(a,j*w); H=freqs(b,a,w); subplot(2,1,1),plot(w,abs(H),grid; subplot(2,1,2),
15、plot(w,angle(H),grid; u21=abs(U(1)*H(1)*cos(99*t+angle(U(1)*H(1); u22=abs(U(2)*H(2)*cos(100*t+angle(U(2)*H(2); u23=abs(U(3)*H(3)*cos(101*t+angle(U(3)*H(3); u2=u21+u22+23; figure(2); subplot(2,1,1),plot(t,u1); subplot(2,1,2),plot(t,u2); 七、试验结果: 10.90.80.79910.50-0.5-19999.299.499.699.8100100.2100.410
16、0.6100.810199.299.499.699.8100100.2100.4100.6100.8101 210-1-202234567252423222101234567 八、试验心得体会:通过本次试验,了解了频率响应求法,加深了对输出稳态响应的印象。 九、试验改进想法:无。 信号与系统仿真试验报告 仿真试验报告 仿真试验报告 MATLAB与限制系统仿真试验报告 通信仿真试验报告 物理仿真试验报告 物流仿真试验报告 Saber仿真试验报告 外贸仿真试验报告 信号源的设计与制作Protel仿真试验报告 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页